Cargando…
Machine learning models for predicting non-alcoholic fatty liver disease in the general United States population: NHANES database
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, affecting over 30% of the United States population. Early patient identification using a simple method is highly desirable. AIM: To create machine learning models for predicting NAFLD in the general Unite...
Autores principales: | Atsawarungruangkit, Amporn, Laoveeravat, Passisd, Promrat, Kittichai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8568572/ https://www.ncbi.nlm.nih.gov/pubmed/34786176 http://dx.doi.org/10.4254/wjh.v13.i10.1417 |
Ejemplares similares
-
Prevalence and risk factors of steatosis and advanced fibrosis using transient elastography in the United States’ adolescent population
por: Atsawarungruangkit, Amporn, et al.
Publicado: (2021) -
C-peptide as a key risk factor for non-alcoholic fatty liver disease in the United States population
por: Atsawarungruangkit, Amporn, et al.
Publicado: (2018) -
Prevalence and risk factors of nonalcoholic fatty liver disease, high-risk nonalcoholic steatohepatitis, and fibrosis among lean United States adults: NHANES 2017-2020
por: Kalligeros, Markos, et al.
Publicado: (2023) -
Association of non-alcoholic fatty liver disease with gallstone disease in the United States hospitalized patient population
por: Kichloo, Asim, et al.
Publicado: (2021) -
Direct cost variance analysis of peroral endoscopic myotomy vs heller myotomy for management of achalasia: A tertiary referral center experience
por: Haider, Syedreza Ali, et al.
Publicado: (2023)