Cargando…
A comparative study of SIR Model, Linear Regression, Logistic Function and ARIMA Model for forecasting COVID-19 cases
Starting February 2020, COVID-19 was confirmed in 11,946 people worldwide, with a mortality rate of almost 2%. A significant number of epidemic diseases consisting of human Coronavirus display patterns. In this study, with the benefit of data analytic, we develop regression models and a Susceptible-...
Autores principales: | Abolmaali, Saina, Shirzaei, Samira |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8568588/ https://www.ncbi.nlm.nih.gov/pubmed/34786422 http://dx.doi.org/10.3934/publichealth.2021048 |
Ejemplares similares
-
Modelling and forecasting new cases of Covid-19 in Nigeria: Comparison of regression, ARIMA and machine learning models
por: Busari, S.I., et al.
Publicado: (2022) -
Forecasting of COVID19 per regions using ARIMA models and polynomial functions
por: Hernandez-Matamoros, Andres, et al.
Publicado: (2020) -
Log-linear models and logistic regression
por: Christensen, Ronald, 1951-
Publicado: (1997) -
Log-linear models and logistic regression
por: Christensen, Ronald
Publicado: (1997) -
ARIMA modelling & forecasting of COVID-19 in top five affected countries
por: Sahai, Alok Kumar, et al.
Publicado: (2020)