Cargando…
Crowdsourcing and machine learning approaches for extracting entities indicating potential foodborne outbreaks from social media
Foodborne outbreaks are a serious but preventable threat to public health that often lead to illness, loss of life, significant economic loss, and the erosion of consumer confidence. Understanding how consumers respond when interacting with foods, as well as extracting information from posts on soci...
Autores principales: | Tao, Dandan, Zhang, Dongyu, Hu, Ruofan, Rundensteiner, Elke, Feng, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8568976/ https://www.ncbi.nlm.nih.gov/pubmed/34737325 http://dx.doi.org/10.1038/s41598-021-00766-w |
Ejemplares similares
-
Epidemiological Data Mining for Assisting with Foodborne Outbreak Investigation
por: Tao, Dandan, et al.
Publicado: (2023) -
A Novel Foodborne Illness Detection and Web Application Tool Based on Social Media
por: Tao, Dandan, et al.
Publicado: (2023) -
A Platform for Crowdsourced Foodborne Illness Surveillance: Description of Users and Reports
por: Quade, Patrick, et al.
Publicado: (2017) -
Patient crowdsourcing of dermatologic consults on a Reddit social media community
por: Chu, Brian, et al.
Publicado: (2021) -
Fighting misinformation on social media using crowdsourced judgments of news source quality
por: Pennycook, Gordon, et al.
Publicado: (2019)