Cargando…
Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100)
Dynamical downscaling is an important approach to obtaining fine-scale weather and climate information. However, dynamical downscaling simulations are often degraded by biases in the large-scale forcing itself. We constructed a bias-corrected global dataset based on 18 models from the Coupled Model...
Autores principales: | Xu, Zhongfeng, Han, Ying, Tam, Chi-Yung, Yang, Zong-Liang, Fu, Congbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569144/ https://www.ncbi.nlm.nih.gov/pubmed/34737356 http://dx.doi.org/10.1038/s41597-021-01079-3 |
Ejemplares similares
-
A 10-km CMIP6 downscaled dataset of temperature and precipitation for historical and future Vietnam climate
por: Tran-Anh, Quan, et al.
Publicado: (2023) -
A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses
por: Gebrechorkos, Solomon, et al.
Publicado: (2023) -
NASA Global Daily Downscaled Projections, CMIP6
por: Thrasher, Bridget, et al.
Publicado: (2022) -
High-resolution CMIP6 climate projections for Ethiopia using the gridded statistical downscaling method
por: Rettie, Fasil M., et al.
Publicado: (2023) -
Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100AD
por: Lorenz, David J., et al.
Publicado: (2016)