Cargando…
Experimental demonstration of confidential communication with quantum security monitoring
Security issues and attack management of optical communication have come increasingly important. Quantum techniques are explored to secure or protect classical communication. In this paper, we present a method for in-service optical physical layer security monitoring that has vacuum-noise level sens...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569167/ https://www.ncbi.nlm.nih.gov/pubmed/34737374 http://dx.doi.org/10.1038/s41598-021-01013-y |
_version_ | 1784594593804713984 |
---|---|
author | Gong, Yupeng Wonfor, Adrian Hunt, Jeffrey H. White, Ian H. Penty, Richard V. |
author_facet | Gong, Yupeng Wonfor, Adrian Hunt, Jeffrey H. White, Ian H. Penty, Richard V. |
author_sort | Gong, Yupeng |
collection | PubMed |
description | Security issues and attack management of optical communication have come increasingly important. Quantum techniques are explored to secure or protect classical communication. In this paper, we present a method for in-service optical physical layer security monitoring that has vacuum-noise level sensitivity without classical security loopholes. This quantum-based method of eavesdropping detection, similar to that used in conventional pilot tone systems, is achieved by sending quantum signals, here comprised of continuous variable quantum states, i.e. weak coherent states modulated at the quantum level. An experimental demonstration of attack detection using the technique was presented for an ideal fibre tapping attack that taps 1% of the ongoing light in a 10 dB channel, and also an ideal correlated jamming attack in the same channel that maintains the light power with excess noise increased by 0.5 shot noise unit. The quantum monitoring system monitors suspicious changes in the quantum signal with the help of advanced data processing algorithms. In addition, unlike the CV-QKD system which is very sensitive to channel excess noise and receiver system noise, the quantum monitoring is potentially more compatible with current optical infrastructure, as it lowers the system requirements and potentially allows much higher classical data rate communication with links length up to 100 s km. |
format | Online Article Text |
id | pubmed-8569167 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-85691672021-11-05 Experimental demonstration of confidential communication with quantum security monitoring Gong, Yupeng Wonfor, Adrian Hunt, Jeffrey H. White, Ian H. Penty, Richard V. Sci Rep Article Security issues and attack management of optical communication have come increasingly important. Quantum techniques are explored to secure or protect classical communication. In this paper, we present a method for in-service optical physical layer security monitoring that has vacuum-noise level sensitivity without classical security loopholes. This quantum-based method of eavesdropping detection, similar to that used in conventional pilot tone systems, is achieved by sending quantum signals, here comprised of continuous variable quantum states, i.e. weak coherent states modulated at the quantum level. An experimental demonstration of attack detection using the technique was presented for an ideal fibre tapping attack that taps 1% of the ongoing light in a 10 dB channel, and also an ideal correlated jamming attack in the same channel that maintains the light power with excess noise increased by 0.5 shot noise unit. The quantum monitoring system monitors suspicious changes in the quantum signal with the help of advanced data processing algorithms. In addition, unlike the CV-QKD system which is very sensitive to channel excess noise and receiver system noise, the quantum monitoring is potentially more compatible with current optical infrastructure, as it lowers the system requirements and potentially allows much higher classical data rate communication with links length up to 100 s km. Nature Publishing Group UK 2021-11-04 /pmc/articles/PMC8569167/ /pubmed/34737374 http://dx.doi.org/10.1038/s41598-021-01013-y Text en © The Author(s) 2021, corrected publication 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Gong, Yupeng Wonfor, Adrian Hunt, Jeffrey H. White, Ian H. Penty, Richard V. Experimental demonstration of confidential communication with quantum security monitoring |
title | Experimental demonstration of confidential communication with quantum security monitoring |
title_full | Experimental demonstration of confidential communication with quantum security monitoring |
title_fullStr | Experimental demonstration of confidential communication with quantum security monitoring |
title_full_unstemmed | Experimental demonstration of confidential communication with quantum security monitoring |
title_short | Experimental demonstration of confidential communication with quantum security monitoring |
title_sort | experimental demonstration of confidential communication with quantum security monitoring |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569167/ https://www.ncbi.nlm.nih.gov/pubmed/34737374 http://dx.doi.org/10.1038/s41598-021-01013-y |
work_keys_str_mv | AT gongyupeng experimentaldemonstrationofconfidentialcommunicationwithquantumsecuritymonitoring AT wonforadrian experimentaldemonstrationofconfidentialcommunicationwithquantumsecuritymonitoring AT huntjeffreyh experimentaldemonstrationofconfidentialcommunicationwithquantumsecuritymonitoring AT whiteianh experimentaldemonstrationofconfidentialcommunicationwithquantumsecuritymonitoring AT pentyrichardv experimentaldemonstrationofconfidentialcommunicationwithquantumsecuritymonitoring |