Cargando…
Synthesis, Stability, and Kinetics of Hydrogen Sulfide Release of Dithiophosphates
[Image: see text] The development of chemicals to slowly release hydrogen sulfide would aid the survival of plants under environmental stressors as well as increase harvest yields. We report a series of dialkyldithiophosphates and disulfidedithiophosphates that slowly degrade to release hydrogen sul...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569798/ https://www.ncbi.nlm.nih.gov/pubmed/34694792 http://dx.doi.org/10.1021/acs.jafc.1c04655 |
Sumario: | [Image: see text] The development of chemicals to slowly release hydrogen sulfide would aid the survival of plants under environmental stressors as well as increase harvest yields. We report a series of dialkyldithiophosphates and disulfidedithiophosphates that slowly degrade to release hydrogen sulfide in the presence of water. Kinetics of the degradation of these chemicals were obtained at 85 °C and room temperature, and it was shown that the identity of the alkyl or sulfide group had a large impact on the rate of hydrolysis, and the rate constant varied by more than 10(4)×. For example, using tert-butanol as the nucleophile yielded a dithiophosphate (8) that hydrolyzed 13,750× faster than the dithiophosphate synthesized from n-butanol (1), indicating that the rate of hydrolysis is structure-dependent. The rates of hydrolysis at 85 °C varied from a low value of 6.9 × 10(–4) h(–1) to a high value of 14.1 h(–1). Hydrogen sulfide release in water was also quantified using a hydrogen sulfide-sensitive electrode. Corn was grown on an industrial scale and dosed with dibutyldithiophosphate to show that these dithiophosphates have potential applications in agriculture. At a loading of 2 kg per acre, a 6.4% increase in the harvest yield of corn was observed. |
---|