Cargando…
MIFAD-Net: Multi-Layer Interactive Feature Fusion Network With Angular Distance Loss for Face Emotion Recognition
Understanding human emotions and psychology is a critical step toward realizing artificial intelligence, and correct recognition of facial expressions is essential for judging emotions. However, the differences caused by changes in facial expression are very subtle, and different expression features...
Autores principales: | Cai, Weiwei, Gao, Ming, Liu, Runmin, Mao, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569934/ https://www.ncbi.nlm.nih.gov/pubmed/34744943 http://dx.doi.org/10.3389/fpsyg.2021.762795 |
Ejemplares similares
-
GCF(2)-Net: global-aware cross-modal feature fusion network for speech emotion recognition
por: Li, Feng, et al.
Publicado: (2023) -
EEG Emotion Recognition by Fusion of Multi-Scale Features
por: Du, Xiuli, et al.
Publicado: (2023) -
The Influence of Key Facial Features on Recognition of Emotion in Cartoon Faces
por: Zhang, Shu, et al.
Publicado: (2021) -
Face Recognition Algorithm Based on Multiscale Feature Fusion Network
por: Li, Yunquan, et al.
Publicado: (2022) -
An attentional residual feature fusion mechanism for sheep face recognition
por: Pang, Yue, et al.
Publicado: (2023)