Cargando…

Associations between locomotive and non-locomotive physical activity and physical performance in older community-dwelling females with and without locomotive syndrome: a cross-sectional study

BACKGROUND: Locomotive syndrome (LS) is a condition of reduced mobility due to a disorder of the locomotive system. Increasing moderate to vigorous physical activity (MVPA) has been recommended to prevent LS. However, to increase daily MVPA is difficult for older people with LS. The MVPA consists of...

Descripción completa

Detalles Bibliográficos
Autores principales: Nishimura, Tomohiro, Hagio, Atsushi, Hamaguchi, Kanako, Kurihara, Toshiyuki, Iemitsu, Motoyuki, Sanada, Kiyoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570009/
https://www.ncbi.nlm.nih.gov/pubmed/34736515
http://dx.doi.org/10.1186/s40101-021-00268-8
Descripción
Sumario:BACKGROUND: Locomotive syndrome (LS) is a condition of reduced mobility due to a disorder of the locomotive system. Increasing moderate to vigorous physical activity (MVPA) has been recommended to prevent LS. However, to increase daily MVPA is difficult for older people with LS. The MVPA consists of not only locomotive activities such as walking but also non-locomotive activities such as household activities. The aim of this study was to examine the associations between locomotive/non-locomotive MVPA and physical performance in older females with and without LS. METHODS: Participants of this cross-sectional study were 143 older community-dwelling Japanese females. The participants were divided into two groups based on the results of the stand-up test: the normal group (NL) (n = 86) and the LS group (n = 57). Both the locomotive and non-locomotive PA seperately measured with its intensity. The intensity of physical activity (PA) was calculated as METs and classified as sedentary behavior (SB 1–1.5 metabolic equivalent tasks (METs)), low-intensity physical activity (LPA 1.6–2.9 METs), and MVPA (≥ 3 METs). For example, locomotive LPA is slow walking speed of 54 m/min, and locomotive MVPA is walking speed of 67 m/min. While non-locomotive LPA is office work and cooking, non-locomotive MVPA is housecleaning. Physical function was evaluated by handgrip strength, walking speed, and 2-step test. RESULTS: Walking speed, hand-grip strength, 2-step test, daily step counts, and all PA measurements were not significantly different between two groups. In the LS, locomotive MVPA (r = 0.293, p < 0.05) and total MVPA (r = 0.299, p < 0.05) was significantly correlated with walking speed, but not in the NL. CONCLUSIONS: Walking speed was positively correlated with locomotive MVPA and total MVPA in the LS group, but not in NL group. This result suggests that slow walking speed in older people with LS occur in connection with lower locomotive MVPA and total MVPA.