Cargando…
A Generalizable and Discriminative Learning Method for Deep EEG-Based Motor Imagery Classification
Convolutional neural networks (CNNs) have been widely applied to the motor imagery (MI) classification field, significantly improving the state-of-the-art (SoA) performance in terms of classification accuracy. Although innovative model structures are thoroughly explored, little attention was drawn t...
Autores principales: | Huang, Xiuyu, Zhou, Nan, Choi, Kup-Sze |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570040/ https://www.ncbi.nlm.nih.gov/pubmed/34744622 http://dx.doi.org/10.3389/fnins.2021.760979 |
Ejemplares similares
-
A Novel Two-Stage Refine Filtering Method for EEG-Based Motor Imagery Classification
por: Yan, Yuxin, et al.
Publicado: (2021) -
Local and global convolutional transformer-based motor imagery EEG classification
por: Zhang, Jiayang, et al.
Publicado: (2023) -
EEG Classification of Motor Imagery Using a Novel Deep Learning Framework
por: Dai, Mengxi, et al.
Publicado: (2019) -
A Novel Transfer Support Matrix Machine for Motor Imagery-Based Brain Computer Interface
por: Chen, Yan, et al.
Publicado: (2020) -
Predicting Sex From EEG: Validity and Generalizability of Deep-Learning-Based Interpretable Classifier
por: Bučková, Barbora, et al.
Publicado: (2020)