Cargando…
Hybrid-based framework for COVID-19 prediction via federated machine learning models
The COronaVIrus Disease 2019 (COVID-19) pandemic is unfortunately highly transmissible across the people. In order to detect and track the suspected COVID-19 infected people and consequently limit the pandemic spread, this paper entails a framework integrating the machine learning (ML), cloud, fog,...
Autores principales: | Kallel, Ameni, Rekik, Molka, Khemakhem, Mahdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570244/ https://www.ncbi.nlm.nih.gov/pubmed/34754141 http://dx.doi.org/10.1007/s11227-021-04166-9 |
Ejemplares similares
-
Deep Reinforcement Learning for Workload Prediction in Federated Cloud Environments
por: Ahamed, Zaakki, et al.
Publicado: (2023) -
Systematic review of co-design in digital health for COVID-19 research
por: Nusir, Muneer, et al.
Publicado: (2022) -
Hybrid Deep-Learning and Machine-Learning Models for Predicting COVID-19
por: Qaid, Talal S., et al.
Publicado: (2021) -
COVID-19 detection using federated machine learning
por: Abdul Salam, Mustafa, et al.
Publicado: (2021) -
A framework for the prediction of earthquake using federated learning
por: Tehseen, Rabia, et al.
Publicado: (2021)