Cargando…
An Empirical Investigation Into Deep and Shallow Rule Learning
Inductive rule learning is arguably among the most traditional paradigms in machine learning. Although we have seen considerable progress over the years in learning rule-based theories, all state-of-the-art learners still learn descriptions that directly relate the input features to the target conce...
Autores principales: | Beck, Florian, Fürnkranz, Johannes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570245/ https://www.ncbi.nlm.nih.gov/pubmed/34746767 http://dx.doi.org/10.3389/frai.2021.689398 |
Ejemplares similares
-
Learning to Play the Chess Variant Crazyhouse Above World Champion Level With Deep Neural Networks and Human Data
por: Czech, Johannes, et al.
Publicado: (2020) -
Investigating the impact of vulnerability datasets on deep learning-based vulnerability detectors
por: Liu, Lili, et al.
Publicado: (2022) -
Machine learning of symbolic compositional rules with genetic programming: dissonance treatment in Palestrina
por: Anders, Torsten, et al.
Publicado: (2019) -
Investigating smart city adoption from the citizen’s insights: empirical evidence from the Jordan context
por: Nusir, Muneer, et al.
Publicado: (2023) -
Rule Extraction From Binary Neural Networks With Convolutional Rules for Model Validation
por: Burkhardt, Sophie, et al.
Publicado: (2021)