Cargando…
Increasing the accuracy of single sequence prediction methods using a deep semi-supervised learning framework
MOTIVATION: Over the past 50 years, our ability to model protein sequences with evolutionary information has progressed in leaps and bounds. However, even with the latest deep learning methods, the modelling of a critically important class of proteins, single orphan sequences, remains unsolved. RESU...
Autores principales: | Moffat, Lewis, Jones, David T |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570780/ https://www.ncbi.nlm.nih.gov/pubmed/34213528 http://dx.doi.org/10.1093/bioinformatics/btab491 |
Ejemplares similares
-
Active Semi-Supervised Learning Method with Hybrid Deep Belief Networks
por: Zhou, Shusen, et al.
Publicado: (2014) -
A Semi-supervised Deep Learning Method for Cervical Cell Classification
por: Zhao, Siqi, et al.
Publicado: (2022) -
scSemiAE: a deep model with semi-supervised learning for single-cell transcriptomics
por: Dong, Jiayi, et al.
Publicado: (2022) -
Semi-supervised learning improves regulatory sequence prediction with unlabeled sequences
por: Mourad, Raphaël
Publicado: (2023) -
Deep semi-supervised learning ensemble framework for classifying co-mentions of human proteins and phenotypes
por: Pourreza Shahri, Morteza, et al.
Publicado: (2021)