Cargando…

MERIDA: a novel Boolean logic-based integer linear program for personalized cancer therapy

MOTIVATION: A major goal of personalized medicine in oncology is the optimization of treatment strategies given measurements of the genetic and molecular profiles of cancer cells. To further our knowledge on drug sensitivity, machine learning techniques are commonly applied to cancer cell line panel...

Descripción completa

Detalles Bibliográficos
Autores principales: Lenhof, Kerstin, Gerstner, Nico, Kehl, Tim, Eckhart, Lea, Schneider, Lara, Lenhof, Hans-Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570817/
https://www.ncbi.nlm.nih.gov/pubmed/34352075
http://dx.doi.org/10.1093/bioinformatics/btab546
_version_ 1784594896639754240
author Lenhof, Kerstin
Gerstner, Nico
Kehl, Tim
Eckhart, Lea
Schneider, Lara
Lenhof, Hans-Peter
author_facet Lenhof, Kerstin
Gerstner, Nico
Kehl, Tim
Eckhart, Lea
Schneider, Lara
Lenhof, Hans-Peter
author_sort Lenhof, Kerstin
collection PubMed
description MOTIVATION: A major goal of personalized medicine in oncology is the optimization of treatment strategies given measurements of the genetic and molecular profiles of cancer cells. To further our knowledge on drug sensitivity, machine learning techniques are commonly applied to cancer cell line panels. RESULTS: We present a novel integer linear programming formulation, called MEthod for Rule Identification with multi-omics DAta (MERIDA), for predicting the drug sensitivity of cancer cells. The method represents a modified version of the LOBICO method and yields easily interpretable models amenable to a Boolean logic-based interpretation. Since the proposed altered logical rules lead to an enormous acceleration of the running times of MERIDA compared to LOBICO, we cannot only consider larger input feature sets integrated from genetic and molecular omics data but also build more comprehensive models that mirror the complexity of cancer initiation and progression. Moreover, we enable the inclusion of a priori knowledge that can either stem from biomarker databases or can also be newly acquired knowledge gathered iteratively by previous runs of MERIDA. Our results show that this approach does not only lead to an improved predictive performance but also identifies a variety of putative sensitivity and resistance biomarkers. We also compare our approach to state-of-the-art machine learning methods and demonstrate the superior performance of our method. Hence, MERIDA has great potential to deepen our understanding of the molecular mechanisms causing drug sensitivity or resistance. AVAILABILITY AND IMPLEMENTATION: The corresponding code is available on github (https://github.com/unisb-bioinf/MERIDA.git). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-8570817
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-85708172021-11-08 MERIDA: a novel Boolean logic-based integer linear program for personalized cancer therapy Lenhof, Kerstin Gerstner, Nico Kehl, Tim Eckhart, Lea Schneider, Lara Lenhof, Hans-Peter Bioinformatics Original Papers MOTIVATION: A major goal of personalized medicine in oncology is the optimization of treatment strategies given measurements of the genetic and molecular profiles of cancer cells. To further our knowledge on drug sensitivity, machine learning techniques are commonly applied to cancer cell line panels. RESULTS: We present a novel integer linear programming formulation, called MEthod for Rule Identification with multi-omics DAta (MERIDA), for predicting the drug sensitivity of cancer cells. The method represents a modified version of the LOBICO method and yields easily interpretable models amenable to a Boolean logic-based interpretation. Since the proposed altered logical rules lead to an enormous acceleration of the running times of MERIDA compared to LOBICO, we cannot only consider larger input feature sets integrated from genetic and molecular omics data but also build more comprehensive models that mirror the complexity of cancer initiation and progression. Moreover, we enable the inclusion of a priori knowledge that can either stem from biomarker databases or can also be newly acquired knowledge gathered iteratively by previous runs of MERIDA. Our results show that this approach does not only lead to an improved predictive performance but also identifies a variety of putative sensitivity and resistance biomarkers. We also compare our approach to state-of-the-art machine learning methods and demonstrate the superior performance of our method. Hence, MERIDA has great potential to deepen our understanding of the molecular mechanisms causing drug sensitivity or resistance. AVAILABILITY AND IMPLEMENTATION: The corresponding code is available on github (https://github.com/unisb-bioinf/MERIDA.git). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2021-08-05 /pmc/articles/PMC8570817/ /pubmed/34352075 http://dx.doi.org/10.1093/bioinformatics/btab546 Text en © The Author(s) 2021. Published by Oxford University Press. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Original Papers
Lenhof, Kerstin
Gerstner, Nico
Kehl, Tim
Eckhart, Lea
Schneider, Lara
Lenhof, Hans-Peter
MERIDA: a novel Boolean logic-based integer linear program for personalized cancer therapy
title MERIDA: a novel Boolean logic-based integer linear program for personalized cancer therapy
title_full MERIDA: a novel Boolean logic-based integer linear program for personalized cancer therapy
title_fullStr MERIDA: a novel Boolean logic-based integer linear program for personalized cancer therapy
title_full_unstemmed MERIDA: a novel Boolean logic-based integer linear program for personalized cancer therapy
title_short MERIDA: a novel Boolean logic-based integer linear program for personalized cancer therapy
title_sort merida: a novel boolean logic-based integer linear program for personalized cancer therapy
topic Original Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570817/
https://www.ncbi.nlm.nih.gov/pubmed/34352075
http://dx.doi.org/10.1093/bioinformatics/btab546
work_keys_str_mv AT lenhofkerstin meridaanovelbooleanlogicbasedintegerlinearprogramforpersonalizedcancertherapy
AT gerstnernico meridaanovelbooleanlogicbasedintegerlinearprogramforpersonalizedcancertherapy
AT kehltim meridaanovelbooleanlogicbasedintegerlinearprogramforpersonalizedcancertherapy
AT eckhartlea meridaanovelbooleanlogicbasedintegerlinearprogramforpersonalizedcancertherapy
AT schneiderlara meridaanovelbooleanlogicbasedintegerlinearprogramforpersonalizedcancertherapy
AT lenhofhanspeter meridaanovelbooleanlogicbasedintegerlinearprogramforpersonalizedcancertherapy