Cargando…
Evaluation of deep learning-based multiparametric MRI oropharyngeal primary tumor auto-segmentation and investigation of input channel effects: Results from a prospective imaging registry
BACKGROUND/PURPOSE: Oropharyngeal cancer (OPC) primary gross tumor volume (GTVp) segmentation is crucial for radiotherapy. Multiparametric MRI (mpMRI) is increasingly used for OPC adaptive radiotherapy but relies on manual segmentation. Therefore, we constructed mpMRI deep learning (DL) OPC GTVp aut...
Autores principales: | Wahid, Kareem A., Ahmed, Sara, He, Renjie, van Dijk, Lisanne V., Teuwen, Jonas, McDonald, Brigid A., Salama, Vivian, Mohamed, Abdallah S.R., Salzillo, Travis, Dede, Cem, Taku, Nicolette, Lai, Stephen Y., Fuller, Clifton D., Naser, Mohamed A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570930/ https://www.ncbi.nlm.nih.gov/pubmed/34765748 http://dx.doi.org/10.1016/j.ctro.2021.10.003 |
Ejemplares similares
-
Auto-detection and segmentation of involved lymph nodes in HPV-associated oropharyngeal cancer using a convolutional deep learning neural network
por: Taku, Nicolette, et al.
Publicado: (2022) -
Deep learning auto-segmentation of cervical skeletal muscle for sarcopenia analysis in patients with head and neck cancer
por: Naser, Mohamed A., et al.
Publicado: (2022) -
MR-Guided Adaptive Radiotherapy for OAR Sparing in Head and Neck Cancers
por: Mulder, Samuel L., et al.
Publicado: (2022) -
Cluster-Based Toxicity Estimation of Osteoradionecrosis via Unsupervised Machine Learning: Moving Beyond Single Dose-Parameter Normal Tissue Complication Probability by Using Whole Dose-Volume Histograms for Cohort Risk Stratification
por: Hosseinian, Seyedmohammadhossein, et al.
Publicado: (2023) -
Intensity standardization methods in magnetic resonance imaging of head and neck cancer
por: Wahid, Kareem A., et al.
Publicado: (2021)