Cargando…

Microbiota-gut-brain axis and nutritional strategy under heat stress

Heat stress is a very universal stress event in recent years. Various lines of evidence in the past literatures indicate that gut microbiota composition is susceptible to variable temperature. A varied microbiota is necessary for optimal regulation of host signaling pathways and disrupting microbiot...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Chaoyue, Wei, Siyu, Zong, Xin, Wang, Yizhen, Jin, Mingliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570956/
https://www.ncbi.nlm.nih.gov/pubmed/34786505
http://dx.doi.org/10.1016/j.aninu.2021.09.008
Descripción
Sumario:Heat stress is a very universal stress event in recent years. Various lines of evidence in the past literatures indicate that gut microbiota composition is susceptible to variable temperature. A varied microbiota is necessary for optimal regulation of host signaling pathways and disrupting microbiota-host homeostasis that induces disease pathology. The microbiota–gut–brain axis involves an interactive mode of communication between the microbes colonizing the gut and brain function. This review summarizes the effects of heat stress on intestinal function and microbiota–gut–brain axis. Heat stress negatively affects intestinal immunity and barrier functions. Microbiota-gut-brain axis is involved in the homeostasis of the gut microbiota, at the same time, heat stress affects the metabolites of microbiota which could alter the function of microbiota–gut–brain axis. We aim to bridge the evidence that the microbiota is adapted to survive and thrive in an extreme environment. Additionally, nutritional strategies for alleviating intestinal heat stress are introduced.