Cargando…

Host genetics of pediatric SARS-CoV-2 COVID-19 and multisystem inflammatory syndrome in children

PURPOSE OF REVIEW: This review is meant to describe the genetic associations with pediatric severe COVID-19 pneumonia and the postinfectious complication of the multisystem inflammatory syndrome in children (MIS-C). Multiple genetic approaches have been carried out, primarily in adults with extrapol...

Descripción completa

Detalles Bibliográficos
Autores principales: Schulert, Grant S., Blum, Sydney A., Cron, Randy Q.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571059/
https://www.ncbi.nlm.nih.gov/pubmed/34534994
http://dx.doi.org/10.1097/MOP.0000000000001061
Descripción
Sumario:PURPOSE OF REVIEW: This review is meant to describe the genetic associations with pediatric severe COVID-19 pneumonia and the postinfectious complication of the multisystem inflammatory syndrome in children (MIS-C). Multiple genetic approaches have been carried out, primarily in adults with extrapolation to children, including genome-wide association studies (GWAS), whole exome and whole genome sequencing (WES/WGS), and target gene analyses. RECENT FINDINGS: Data from adults with severe COVID-19 have identified genomic regions (human leukocyte antigen locus and 3p21.31) as potential risk factors. Genes related to viral entry into cells (ABO blood group locus, ACE2, TMPRS22) have been linked to severe COVID-19 patients by GWAS and target gene approaches. Type I interferon (e.g. IFNAR2) and antiviral gene (e.g. TLR7) associations have been identified by several genetic approaches in severe COVID-19. WES has noted associations with several immune regulatory genes (e.g. SOCS1). Target gene approaches have identified mutations in perforin-mediated cytolytic pathway genes in children and adults with severe COVID-19 and children with MIS-C. SUMMARY: Several genetic associations have been identified in individuals with severe COVID-19 and MIS-C via various genetic approaches. Broadly speaking, COVID-19 genetic associations include genes involved with antiviral functions, viral cell entry, immune regulation, chemotaxis of white blood cells, and lymphocyte cytolytic function.