Cargando…
Spatio-temporal prediction of the COVID-19 pandemic in US counties: modeling with a deep LSTM neural network
Prediction of complex epidemiological systems such as COVID-19 is challenging on many grounds. Commonly used compartmental models struggle to handle an epidemiological process that evolves rapidly and is spatially heterogeneous. On the other hand, machine learning methods are limited at the beginnin...
Autores principales: | Nikparvar, Behnam, Rahman, Md. Mokhlesur, Hatami, Faizeh, Thill, Jean-Claude |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571358/ https://www.ncbi.nlm.nih.gov/pubmed/34741093 http://dx.doi.org/10.1038/s41598-021-01119-3 |
Ejemplares similares
-
Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model
por: Hatami, Faizeh, et al.
Publicado: (2022) -
Associations between COVID-19 Pandemic, Lockdown Measures and Human Mobility: Longitudinal Evidence from 86 Countries
por: Rahman, Md. Mokhlesur, et al.
Publicado: (2022) -
Pandemic vulnerability index of US cities: A hybrid knowledge-based and data-driven approach
por: Rahman, Md. Shahinoor, et al.
Publicado: (2023) -
Public Perceptions of COVID-19 Vaccines: Policy Implications from US Spatiotemporal Sentiment Analytics
por: Ali, G. G. Md. Nawaz, et al.
Publicado: (2021) -
Classification of Drowsiness Levels Based on a Deep Spatio-Temporal Convolutional Bidirectional LSTM Network Using Electroencephalography Signals
por: Jeong, Ji-Hoon, et al.
Publicado: (2019)