Cargando…
Identification of stress response proteins through fusion of machine learning models and statistical paradigms
Proteins are a vital component of cells that perform physiological functions to ensure smooth operations of bodily functions. Identification of a protein's function involves a detailed understanding of the structure of proteins. Stress proteins are essential mediators of several responses to ce...
Autores principales: | Alzahrani, Ebraheem, Alghamdi, Wajdi, Ullah, Malik Zaka, Khan, Yaser Daanial |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571424/ https://www.ncbi.nlm.nih.gov/pubmed/34741132 http://dx.doi.org/10.1038/s41598-021-99083-5 |
Ejemplares similares
-
Evaluating machine learning methodologies for identification of cancer driver genes
por: Malebary, Sharaf J., et al.
Publicado: (2021) -
Machine learning techniques for identification of carcinogenic mutations, which cause breast adenocarcinoma
por: Shah, Asghar Ali, et al.
Publicado: (2022) -
Identification of 4-carboxyglutamate residue sites based on position based statistical feature and multiple classification
por: Shah, Asghar Ali, et al.
Publicado: (2020) -
iDHU-Ensem: Identification of dihydrouridine sites through ensemble learning models
por: Suleman, Muhammad Taseer, et al.
Publicado: (2023) -
Hemolytic-Pred: A machine learning-based predictor for hemolytic
proteins using position and composition-based features
por: Perveen, Gulnaz, et al.
Publicado: (2023)