Cargando…
Classifying the tracing difficulty of 3D neuron image blocks based on deep learning
Quickly and accurately tracing neuronal morphologies in large-scale volumetric microscopy data is a very challenging task. Most automatic algorithms for tracing multi-neuron in a whole brain are designed under the Ultra-Tracer framework, which begins the tracing of a neuron from its soma and traces...
Autores principales: | Yang, Bin, Huang, Jiajin, Wu, Gaowei, Yang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571474/ https://www.ncbi.nlm.nih.gov/pubmed/34739611 http://dx.doi.org/10.1186/s40708-021-00146-0 |
Ejemplares similares
-
Exploring highly reliable substructures in auto-reconstructions of a neuron
por: He, Yishan, et al.
Publicado: (2021) -
DeepNeuron: an open deep learning toolbox for neuron tracing
por: Zhou, Zhi, et al.
Publicado: (2018) -
Classifying algebras for boundary conditions and traces on spaces of conformal blocks
por: Schweigert, Christoph, et al.
Publicado: (1998) -
Neuron tracing from light microscopy images: automation, deep learning and bench testing
por: Liu, Yufeng, et al.
Publicado: (2022) -
DeepNoise: Signal and Noise Disentanglement Based on Classifying Fluorescent Microscopy Images via Deep Learning
por: Yang, Sen, et al.
Publicado: (2022)