Cargando…
Prediction of RNA subcellular localization: Learning from heterogeneous data sources
RNA subcellular localization has recently emerged as a widespread phenomenon, which may apply to the majority of RNAs. The two main sources of data for characterization of RNA localization are sequence features and microscopy images, such as obtained from single-molecule fluorescent in situ hybridiz...
Autores principales: | Savulescu, Anca Flavia, Bouilhol, Emmanuel, Beaume, Nicolas, Nikolski, Macha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571491/ https://www.ncbi.nlm.nih.gov/pubmed/34765919 http://dx.doi.org/10.1016/j.isci.2021.103298 |
Ejemplares similares
-
Interrogating RNA and protein spatial subcellular distribution in smFISH data with DypFISH
por: Savulescu, Anca F., et al.
Publicado: (2021) -
FluoSim: simulator of single molecule dynamics for fluorescence live-cell and super-resolution imaging of membrane proteins
por: Lagardère, Matthieu, et al.
Publicado: (2020) -
Deep learning model for automatic segmentation of lungs and pulmonary metastasis in small animal MR images
por: Lefevre, Edgar, et al.
Publicado: (2022) -
Subcellular localization of Rho GTPases: implications for axon regeneration
por: Hynds, DiAnna L.
Publicado: (2015) -
VirHunter: A Deep Learning-Based Method for Detection of Novel RNA Viruses in Plant Sequencing Data
por: Sukhorukov, Grigorii, et al.
Publicado: (2022)