Cargando…

Sex difference in neural substrates underlying the association between trait self-control and overeating in the COVID-19 pandemic

During the COVID-19 pandemic, people are at risk of developing disordered eating behaviors. The present study utilized resting-state functional magnetic resonance imaging (fMRI) to examine how trait self-control and its neural mechanisms predict overeating tendencies in young adults during the pande...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qingqing, Xiang, Guangcan, Song, Shiqing, Li, Yuhua, Du, Xiaoli, Liu, Xinyuan, Chen, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571566/
https://www.ncbi.nlm.nih.gov/pubmed/34742746
http://dx.doi.org/10.1016/j.neuropsychologia.2021.108083
Descripción
Sumario:During the COVID-19 pandemic, people are at risk of developing disordered eating behaviors. The present study utilized resting-state functional magnetic resonance imaging (fMRI) to examine how trait self-control and its neural mechanisms predict overeating tendencies in young adults during the pandemic. Data on trait self-control, the amplitude of low-frequency fluctuation (ALFF), and resting-state functional connectivity (RSFC) were collected before COVID-19 (September 2019, T1), and data on overeating were collected during COVID-19 (February 2020, T2). Whole-brain regression analyses (N = 538) revealed that higher trait self-control was associated with higher ALFF in the right dorsolateral and ventrolateral prefrontal cortex (DLPFC, VLPFC) and the left anterior insula, and lower ALFF in the left fusiform gyrus and precuneus. With the DLPFC, fusiform gyrus and precuneus as seed regions, trait selfcontrol was associated with decreased connectivity of the orbitofrontal cortex, anterior cingulate cortex, temporal pole, and insula, and increased connectivity between the right VLPFC and anterior cerebellum. Longitudinal mediation models showed that trait self-control (T1) negatively predicted overeating (T2), and the mediating effects of the fusiform gyrus, DLPFC, and VLPFC were moderated by sex. The present study reveals that the brain networks for trait self-control are mainly involved in cognitive and executive control and incentive and emotional processing, demonstrating the longitudinal benefits of trait self-control in alleviating disordered eating behaviors during the pandemic. Sex differences in the neural substrates underlie this association. These finding may have implications of the interventions for behavioral maladjustment.