Cargando…
Single molecule mass photometry reveals the dynamic oligomerization of human and plant peroxiredoxins
Protein oligomerization is central to biological function and regulation, yet its experimental quantification and measurement of dynamic transitions in solution remain challenging. Here, we show that single molecule mass photometry quantifies affinity and polydispersity of heterogeneous protein comp...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571717/ https://www.ncbi.nlm.nih.gov/pubmed/34765909 http://dx.doi.org/10.1016/j.isci.2021.103258 |
_version_ | 1784595083526406144 |
---|---|
author | Liebthal, Michael Kushwah, Manish Singh Kukura, Philipp Dietz, Karl-Josef |
author_facet | Liebthal, Michael Kushwah, Manish Singh Kukura, Philipp Dietz, Karl-Josef |
author_sort | Liebthal, Michael |
collection | PubMed |
description | Protein oligomerization is central to biological function and regulation, yet its experimental quantification and measurement of dynamic transitions in solution remain challenging. Here, we show that single molecule mass photometry quantifies affinity and polydispersity of heterogeneous protein complexes in solution. We demonstrate these capabilities by studying the functionally relevant oligomeric equilibria of 2-cysteine peroxiredoxins (2CPs). Comparison of the polydispersity of plant and human 2CPs as a function of concentration and redox state revealed features conserved among all 2CPs. In addition, we also find species-specific differences in oligomeric transitions, the occurrence of intermediates and the formation of high molecular weight complexes, which are associated with chaperone activity or act as a storage pool for more efficient dimers outlining the functional differentiation of human 2CPs. Our results point to a diversified functionality of oligomerization for 2CPs and illustrate the power of mass photometry for characterizing heterogeneous oligomeric protein distributions in near native conditions. |
format | Online Article Text |
id | pubmed-8571717 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-85717172021-11-10 Single molecule mass photometry reveals the dynamic oligomerization of human and plant peroxiredoxins Liebthal, Michael Kushwah, Manish Singh Kukura, Philipp Dietz, Karl-Josef iScience Article Protein oligomerization is central to biological function and regulation, yet its experimental quantification and measurement of dynamic transitions in solution remain challenging. Here, we show that single molecule mass photometry quantifies affinity and polydispersity of heterogeneous protein complexes in solution. We demonstrate these capabilities by studying the functionally relevant oligomeric equilibria of 2-cysteine peroxiredoxins (2CPs). Comparison of the polydispersity of plant and human 2CPs as a function of concentration and redox state revealed features conserved among all 2CPs. In addition, we also find species-specific differences in oligomeric transitions, the occurrence of intermediates and the formation of high molecular weight complexes, which are associated with chaperone activity or act as a storage pool for more efficient dimers outlining the functional differentiation of human 2CPs. Our results point to a diversified functionality of oligomerization for 2CPs and illustrate the power of mass photometry for characterizing heterogeneous oligomeric protein distributions in near native conditions. Elsevier 2021-10-13 /pmc/articles/PMC8571717/ /pubmed/34765909 http://dx.doi.org/10.1016/j.isci.2021.103258 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liebthal, Michael Kushwah, Manish Singh Kukura, Philipp Dietz, Karl-Josef Single molecule mass photometry reveals the dynamic oligomerization of human and plant peroxiredoxins |
title | Single molecule mass photometry reveals the dynamic oligomerization of human and plant peroxiredoxins |
title_full | Single molecule mass photometry reveals the dynamic oligomerization of human and plant peroxiredoxins |
title_fullStr | Single molecule mass photometry reveals the dynamic oligomerization of human and plant peroxiredoxins |
title_full_unstemmed | Single molecule mass photometry reveals the dynamic oligomerization of human and plant peroxiredoxins |
title_short | Single molecule mass photometry reveals the dynamic oligomerization of human and plant peroxiredoxins |
title_sort | single molecule mass photometry reveals the dynamic oligomerization of human and plant peroxiredoxins |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571717/ https://www.ncbi.nlm.nih.gov/pubmed/34765909 http://dx.doi.org/10.1016/j.isci.2021.103258 |
work_keys_str_mv | AT liebthalmichael singlemoleculemassphotometryrevealsthedynamicoligomerizationofhumanandplantperoxiredoxins AT kushwahmanishsingh singlemoleculemassphotometryrevealsthedynamicoligomerizationofhumanandplantperoxiredoxins AT kukuraphilipp singlemoleculemassphotometryrevealsthedynamicoligomerizationofhumanandplantperoxiredoxins AT dietzkarljosef singlemoleculemassphotometryrevealsthedynamicoligomerizationofhumanandplantperoxiredoxins |