Cargando…
A single aromatic residue in sgp130Fc/olamkicept allows the discrimination between interleukin-6 and interleukin-11 trans-signaling
Blocking the activity of cytokines is an efficient strategy to combat inflammatory diseases. Interleukin-6 (IL-6) fulfills its pro-inflammatory properties via its soluble receptor (IL-6 trans-signaling). The selective trans-signaling inhibitor olamkicept (sgp130Fc) is currently in clinical developme...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571719/ https://www.ncbi.nlm.nih.gov/pubmed/34765926 http://dx.doi.org/10.1016/j.isci.2021.103309 |
Sumario: | Blocking the activity of cytokines is an efficient strategy to combat inflammatory diseases. Interleukin-6 (IL-6) fulfills its pro-inflammatory properties via its soluble receptor (IL-6 trans-signaling). The selective trans-signaling inhibitor olamkicept (sgp130Fc) is currently in clinical development. We have previously shown that sgp130Fc can also efficiently block trans-signaling of the closely related cytokine IL-11, which elicits the question how selectivity for one of the two cytokines can be achieved. Using structural information, we show that the interfaces between IL-6R-gp130 and IL-11R-gp130, respectively, within the so-called site III are different between the two cytokines. Modification of an aromatic cluster around Q113 of gp130 within these interfaces allows the discrimination between IL-6 and IL-11 trans-signaling. Using recombinant sgp130Fc variants, we demonstrate that these differences can indeed be exploited to generate a truly selective IL-6 trans-signaling inhibitor. Our data highlight how the selectivity of a clinically relevant designer protein can be further improved. |
---|