Cargando…
Follow-up Interactive Long-Term Expert Ranking (FILTER): a crowdsourcing platform to adjudicate risk for survivorship care
OBJECTIVES: To develop an online crowdsourcing platform where oncologists and other survivorship experts can adjudicate risk for complications in follow-up. MATERIALS AND METHODS: This platform, called Follow-up Interactive Long-Term Expert Ranking (FILTER), prompts participants to adjudicate risk b...
Autores principales: | Cheng, Alex C, Wen, Li, Li, Yanwei, Koyama, Tatsuki, Berry, Lynne D, Pal, Tuya, Friedman, Debra L, Osterman, Travis J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571913/ https://www.ncbi.nlm.nih.gov/pubmed/34755049 http://dx.doi.org/10.1093/jamiaopen/ooab090 |
Ejemplares similares
-
Learning by aggregating experts and filtering novices: a solution to crowdsourcing problems in bioinformatics
por: Zhang, Ping, et al.
Publicado: (2013) -
Ranking Adverse Drug Reactions With Crowdsourcing
por: Gottlieb, Assaf, et al.
Publicado: (2015) -
Comparing the Quality of Crowdsourced Data Contributed by Expert and Non-Experts
por: See, Linda, et al.
Publicado: (2013) -
AGRA: analysis of gene ranking algorithms
por: Kocbek, Simon, et al.
Publicado: (2011) -
Ranked choice voting for representative transcripts with TRaCE
por: Olson, Andrew J, et al.
Publicado: (2021)