Cargando…
Automatic Segmentation of Clinical Target Volume and Organs-at-Risk for Breast Conservative Radiotherapy Using a Convolutional Neural Network
OBJECTIVE: Delineation of clinical target volume (CTV) and organs at risk (OARs) is important for radiotherapy but is time-consuming. We trained and evaluated a U-ResNet model to provide fast and consistent auto-segmentation. METHODS: We collected 160 patients’ CT scans with breast cancer who underw...
Autores principales: | Liu, Zhikai, Liu, Fangjie, Chen, Wanqi, Tao, Yinjie, Liu, Xia, Zhang, Fuquan, Shen, Jing, Guan, Hui, Zhen, Hongnan, Wang, Shaobin, Chen, Qi, Chen, Yu, Hou, Xiaorong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572021/ https://www.ncbi.nlm.nih.gov/pubmed/34754241 http://dx.doi.org/10.2147/CMAR.S330249 |
Ejemplares similares
-
Automatic Segmentation of Clinical Target Volumes for Post-Modified Radical Mastectomy Radiotherapy Using Convolutional Neural Networks
por: Liu, Zhikai, et al.
Publicado: (2021) -
Clinical Validation and Treatment Plan Evaluation Based on Autodelineation of the Clinical Target Volume for Prostate Cancer Radiotherapy
por: Shen, Jing, et al.
Publicado: (2023) -
A blind randomized validated convolutional neural network for auto‐segmentation of clinical target volume in rectal cancer patients receiving neoadjuvant radiotherapy
por: Wu, Yijun, et al.
Publicado: (2021) -
The Impact of Different Simulation Modalities on Target Volume Delineation in Breast-Conserving Radiotherapy
por: Jin, Meng, et al.
Publicado: (2021) -
Clinical application of radiotherapy in patients with oligometastatic ovarian cancer: a sharp tool to prolong the interval of systemic treatment
por: Shen, Jing, et al.
Publicado: (2022)