Cargando…
Deep learning-based fully automated Z-axis coverage range definition from scout scans to eliminate overscanning in chest CT imaging
BACKGROUND: Despite the prevalence of chest CT in the clinic, concerns about unoptimized protocols delivering high radiation doses to patients still remain. This study aimed to assess the additional radiation dose associated with overscanning in chest CT and to develop an automated deep learning-ass...
Autores principales: | Salimi, Yazdan, Shiri, Isaac, Akhavanallaf, Azadeh, Mansouri, Zahra, Saberi Manesh, Abdollah, Sanaat, Amirhossein, Pakbin, Masoumeh, Askari, Dariush, Sandoughdaran, Saleh, Sharifipour, Ehsan, Arabi, Hossein, Zaidi, Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572075/ https://www.ncbi.nlm.nih.gov/pubmed/34743251 http://dx.doi.org/10.1186/s13244-021-01105-3 |
Ejemplares similares
-
COLI‐Net: Deep learning‐assisted fully automated COVID‐19 lung and infection pneumonia lesion detection and segmentation from chest computed tomography images
por: Shiri, Isaac, et al.
Publicado: (2021) -
Ultra-low-dose chest CT imaging of COVID-19 patients using a deep residual neural network
por: Shiri, Isaac, et al.
Publicado: (2020) -
High-dimensional multinomial multiclass severity scoring of COVID-19 pneumonia using CT radiomics features and machine learning algorithms
por: Shiri, Isaac, et al.
Publicado: (2022) -
Deep‐TOF‐PET: Deep learning‐guided generation of time‐of‐flight from non‐TOF brain PET images in the image and projection domains
por: Sanaat, Amirhossein, et al.
Publicado: (2022) -
Real-time, acquisition parameter-free voxel-wise patient-specific Monte Carlo dose reconstruction in whole-body CT scanning using deep neural networks
por: Salimi, Yazdan, et al.
Publicado: (2023)