Cargando…
Comparable prediction of breast cancer risk from a glimpse or a first impression of a mammogram
Expert radiologists can discern normal from abnormal mammograms with above-chance accuracy after brief (e.g. 500 ms) exposure. They can even predict cancer risk viewing currently normal images (priors) from women who will later develop cancer. This involves a rapid, global, non-selective process cal...
Autores principales: | Raat, E. M., Farr, I., Wolfe, J. M., Evans, K. K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572261/ https://www.ncbi.nlm.nih.gov/pubmed/34743266 http://dx.doi.org/10.1186/s41235-021-00339-5 |
Ejemplares similares
-
Reliability of radiologists’ first impression when interpreting a screening mammogram
por: Gandomkar, Ziba, et al.
Publicado: (2023) -
Early signs of cancer present in the fine detail of mammograms
por: Raat, Emma M., et al.
Publicado: (2023) -
Using global feedback to induce learning of gist of abnormality in mammograms
por: Raat, E. M., et al.
Publicado: (2023) -
Inversion effects in the expert classification of mammograms and faces
por: Chin, Michael D., et al.
Publicado: (2018) -
A Clinical Prediction Model for Breast Cancer in Women Having Their First Mammogram
por: Wangkulangkul, Piyanun, et al.
Publicado: (2023)