Cargando…
An Analysis of Image Features Extracted by CNNs to Design Classification Models for COVID-19 and Non-COVID-19
The SARS-CoV-2 virus causes a respiratory disease in humans, known as COVID-19. The confirmatory diagnostic of this disease occurs through the real-time reverse transcription and polymerase chain reaction test (RT-qPCR). However, the period of obtaining the results limits the application of the mass...
Autores principales: | Teodoro, Arthur A. M., Silva, Douglas H., Saadi, Muhammad, Okey, Ogobuchi D., Rosa, Renata L., Otaibi, Sattam Al, Rodríguez, Demóstenes Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572648/ https://www.ncbi.nlm.nih.gov/pubmed/34777680 http://dx.doi.org/10.1007/s11265-021-01714-7 |
Ejemplares similares
-
BoostedEnML: Efficient Technique for Detecting Cyberattacks in IoT Systems Using Boosted Ensemble Machine Learning
por: Okey, Ogobuchi Daniel, et al.
Publicado: (2022) -
Attentive transformer deep learning algorithm for intrusion detection on IoT systems using automatic Xplainable feature selection
por: Zegarra Rodríguez, Demóstenes, et al.
Publicado: (2023) -
Improving COVID-19 CT classification of CNNs by learning parameter-efficient representation
por: Xu, Yujia, et al.
Publicado: (2023) -
FUSI-CAD: Coronavirus (COVID-19) diagnosis based on the fusion of CNNs and handcrafted features
por: Ragab, Dina A., et al.
Publicado: (2020) -
Convolutional neural networks and temporal CNNs for COVID-19 forecasting in France
por: Mohimont, Lucas, et al.
Publicado: (2021)