Cargando…

Upregulation of Toll-like Receptor 2 in Dental Primary Afferents Following Pulp Injury

Pulpitis (toothache) is a painful inflammation of the dental pulp and is a prevalent problem throughout the world. This pulpal inflammation occurs in the cells inside the dental pulp, which have host defense mechanisms to combat oral microorganisms invading the pulp space of exposed teeth. This inna...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Pa Reum, Lee, Jin-Hee, Park, Ji Min, Oh, Seog Bae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society for Brain and Neural Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572661/
https://www.ncbi.nlm.nih.gov/pubmed/34737238
http://dx.doi.org/10.5607/en21018
_version_ 1784595261285203968
author Lee, Pa Reum
Lee, Jin-Hee
Park, Ji Min
Oh, Seog Bae
author_facet Lee, Pa Reum
Lee, Jin-Hee
Park, Ji Min
Oh, Seog Bae
author_sort Lee, Pa Reum
collection PubMed
description Pulpitis (toothache) is a painful inflammation of the dental pulp and is a prevalent problem throughout the world. This pulpal inflammation occurs in the cells inside the dental pulp, which have host defense mechanisms to combat oral microorganisms invading the pulp space of exposed teeth. This innate immunity has been well studied, with a focus on Toll-like receptors (TLRs). The function of TLR4, activated by Gram-negative bacteria, has been demonstrated in trigeminal ganglion (TG) neurons for dental pain. Although Gram-positive bacteria predominate in the teeth of patients with caries and pulpitis, the role of TLR2, which is activated by Gram-positive bacteria, is poorly understood in dental primary afferent (DPA) neurons that densely innervate the dental pulp. Using Fura-2 based Ca(2+) imaging, we observed reproducible intracellular Ca(2+) responses induced by Pam(3)CSK(4) and Pam(2)CSK(4) (TLR2-specific agonists) in TG neurons of adult wild-type (WT) mice. The response was completely abolished in TLR2 knock-out (KO) mice. Single-cell RT-PCR detected Tlr2 mRNA in DPA neurons labeled with fluorescent retrograde tracers from the upper molars. Using the mouse pulpitis model, real-time RT-PCR revealed that Tlr2 and inflammatory-related molecules were upregulated in injured TG, compared to non-injured TG, from WT mice, but not from TLR2 KO mice. TLR2 protein expression was also upregulated in injured DPA neurons, and the change was corresponded with a significant increase in calcitonin gene-related peptide (CGRP) expression. Our results provide a better molecular understanding of pulpitis by revealing the potential contribution of TLR2 to pulpal inflammatory pain.
format Online
Article
Text
id pubmed-8572661
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Korean Society for Brain and Neural Sciences
record_format MEDLINE/PubMed
spelling pubmed-85726612021-11-18 Upregulation of Toll-like Receptor 2 in Dental Primary Afferents Following Pulp Injury Lee, Pa Reum Lee, Jin-Hee Park, Ji Min Oh, Seog Bae Exp Neurobiol Original Article Pulpitis (toothache) is a painful inflammation of the dental pulp and is a prevalent problem throughout the world. This pulpal inflammation occurs in the cells inside the dental pulp, which have host defense mechanisms to combat oral microorganisms invading the pulp space of exposed teeth. This innate immunity has been well studied, with a focus on Toll-like receptors (TLRs). The function of TLR4, activated by Gram-negative bacteria, has been demonstrated in trigeminal ganglion (TG) neurons for dental pain. Although Gram-positive bacteria predominate in the teeth of patients with caries and pulpitis, the role of TLR2, which is activated by Gram-positive bacteria, is poorly understood in dental primary afferent (DPA) neurons that densely innervate the dental pulp. Using Fura-2 based Ca(2+) imaging, we observed reproducible intracellular Ca(2+) responses induced by Pam(3)CSK(4) and Pam(2)CSK(4) (TLR2-specific agonists) in TG neurons of adult wild-type (WT) mice. The response was completely abolished in TLR2 knock-out (KO) mice. Single-cell RT-PCR detected Tlr2 mRNA in DPA neurons labeled with fluorescent retrograde tracers from the upper molars. Using the mouse pulpitis model, real-time RT-PCR revealed that Tlr2 and inflammatory-related molecules were upregulated in injured TG, compared to non-injured TG, from WT mice, but not from TLR2 KO mice. TLR2 protein expression was also upregulated in injured DPA neurons, and the change was corresponded with a significant increase in calcitonin gene-related peptide (CGRP) expression. Our results provide a better molecular understanding of pulpitis by revealing the potential contribution of TLR2 to pulpal inflammatory pain. The Korean Society for Brain and Neural Sciences 2021-10-31 2021-10-31 /pmc/articles/PMC8572661/ /pubmed/34737238 http://dx.doi.org/10.5607/en21018 Text en Copyright © Experimental Neurobiology 2021 https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0 (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Lee, Pa Reum
Lee, Jin-Hee
Park, Ji Min
Oh, Seog Bae
Upregulation of Toll-like Receptor 2 in Dental Primary Afferents Following Pulp Injury
title Upregulation of Toll-like Receptor 2 in Dental Primary Afferents Following Pulp Injury
title_full Upregulation of Toll-like Receptor 2 in Dental Primary Afferents Following Pulp Injury
title_fullStr Upregulation of Toll-like Receptor 2 in Dental Primary Afferents Following Pulp Injury
title_full_unstemmed Upregulation of Toll-like Receptor 2 in Dental Primary Afferents Following Pulp Injury
title_short Upregulation of Toll-like Receptor 2 in Dental Primary Afferents Following Pulp Injury
title_sort upregulation of toll-like receptor 2 in dental primary afferents following pulp injury
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572661/
https://www.ncbi.nlm.nih.gov/pubmed/34737238
http://dx.doi.org/10.5607/en21018
work_keys_str_mv AT leepareum upregulationoftolllikereceptor2indentalprimaryafferentsfollowingpulpinjury
AT leejinhee upregulationoftolllikereceptor2indentalprimaryafferentsfollowingpulpinjury
AT parkjimin upregulationoftolllikereceptor2indentalprimaryafferentsfollowingpulpinjury
AT ohseogbae upregulationoftolllikereceptor2indentalprimaryafferentsfollowingpulpinjury