Cargando…
Regulation of autophagy protects against liver injury in liver surgery‐induced ischaemia/reperfusion
Transient ischaemia and reperfusion in liver tissue induce hepatic ischaemia/reperfusion (I/R) tissue injury and a profound inflammatory response in vivo. Hepatic I/R can be classified into warm I/R and cold I/R and is characterized by three main types of cell death, apoptosis, necrosis and autophag...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572770/ https://www.ncbi.nlm.nih.gov/pubmed/34626066 http://dx.doi.org/10.1111/jcmm.16943 |
_version_ | 1784595282482167808 |
---|---|
author | Hu, Chenxia Zhao, Lingfei Zhang, Fen Li, Lanjuan |
author_facet | Hu, Chenxia Zhao, Lingfei Zhang, Fen Li, Lanjuan |
author_sort | Hu, Chenxia |
collection | PubMed |
description | Transient ischaemia and reperfusion in liver tissue induce hepatic ischaemia/reperfusion (I/R) tissue injury and a profound inflammatory response in vivo. Hepatic I/R can be classified into warm I/R and cold I/R and is characterized by three main types of cell death, apoptosis, necrosis and autophagy, in rodents or patients following I/R. Warm I/R is observed in patients or animal models undergoing liver resection, haemorrhagic shock, trauma, cardiac arrest or hepatic sinusoidal obstruction syndrome when vascular occlusion inhibits normal blood perfusion in liver tissue. Cold I/R is a condition that affects only patients who have undergone liver transplantation (LT) and is caused by donated liver graft preservation in a hypothermic environment prior to entering a warm reperfusion phase. Under stress conditions, autophagy plays a critical role in promoting cell survival and maintaining liver homeostasis by generating new adenosine triphosphate (ATP) and organelle components after the degradation of macromolecules and organelles in liver tissue. This role of autophagy may contribute to the protection of hepatic I/R‐induced liver injury; however, a considerable amount of evidence has shown that autophagy inhibition also protects against hepatic I/R injury by inhibiting autophagic cell death under specific circumstances. In this review, we comprehensively discuss current strategies and underlying mechanisms of autophagy regulation that alleviates I/R injury after liver resection and LT. Directed autophagy regulation can maintain liver homeostasis and improve liver function in individuals undergoing warm or cold I/R. In this way, autophagy regulation can contribute to improving the prognosis of patients undergoing liver resection or LT. |
format | Online Article Text |
id | pubmed-8572770 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85727702021-11-10 Regulation of autophagy protects against liver injury in liver surgery‐induced ischaemia/reperfusion Hu, Chenxia Zhao, Lingfei Zhang, Fen Li, Lanjuan J Cell Mol Med Reviews Transient ischaemia and reperfusion in liver tissue induce hepatic ischaemia/reperfusion (I/R) tissue injury and a profound inflammatory response in vivo. Hepatic I/R can be classified into warm I/R and cold I/R and is characterized by three main types of cell death, apoptosis, necrosis and autophagy, in rodents or patients following I/R. Warm I/R is observed in patients or animal models undergoing liver resection, haemorrhagic shock, trauma, cardiac arrest or hepatic sinusoidal obstruction syndrome when vascular occlusion inhibits normal blood perfusion in liver tissue. Cold I/R is a condition that affects only patients who have undergone liver transplantation (LT) and is caused by donated liver graft preservation in a hypothermic environment prior to entering a warm reperfusion phase. Under stress conditions, autophagy plays a critical role in promoting cell survival and maintaining liver homeostasis by generating new adenosine triphosphate (ATP) and organelle components after the degradation of macromolecules and organelles in liver tissue. This role of autophagy may contribute to the protection of hepatic I/R‐induced liver injury; however, a considerable amount of evidence has shown that autophagy inhibition also protects against hepatic I/R injury by inhibiting autophagic cell death under specific circumstances. In this review, we comprehensively discuss current strategies and underlying mechanisms of autophagy regulation that alleviates I/R injury after liver resection and LT. Directed autophagy regulation can maintain liver homeostasis and improve liver function in individuals undergoing warm or cold I/R. In this way, autophagy regulation can contribute to improving the prognosis of patients undergoing liver resection or LT. John Wiley and Sons Inc. 2021-10-08 2021-11 /pmc/articles/PMC8572770/ /pubmed/34626066 http://dx.doi.org/10.1111/jcmm.16943 Text en © 2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Reviews Hu, Chenxia Zhao, Lingfei Zhang, Fen Li, Lanjuan Regulation of autophagy protects against liver injury in liver surgery‐induced ischaemia/reperfusion |
title | Regulation of autophagy protects against liver injury in liver surgery‐induced ischaemia/reperfusion |
title_full | Regulation of autophagy protects against liver injury in liver surgery‐induced ischaemia/reperfusion |
title_fullStr | Regulation of autophagy protects against liver injury in liver surgery‐induced ischaemia/reperfusion |
title_full_unstemmed | Regulation of autophagy protects against liver injury in liver surgery‐induced ischaemia/reperfusion |
title_short | Regulation of autophagy protects against liver injury in liver surgery‐induced ischaemia/reperfusion |
title_sort | regulation of autophagy protects against liver injury in liver surgery‐induced ischaemia/reperfusion |
topic | Reviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572770/ https://www.ncbi.nlm.nih.gov/pubmed/34626066 http://dx.doi.org/10.1111/jcmm.16943 |
work_keys_str_mv | AT huchenxia regulationofautophagyprotectsagainstliverinjuryinliversurgeryinducedischaemiareperfusion AT zhaolingfei regulationofautophagyprotectsagainstliverinjuryinliversurgeryinducedischaemiareperfusion AT zhangfen regulationofautophagyprotectsagainstliverinjuryinliversurgeryinducedischaemiareperfusion AT lilanjuan regulationofautophagyprotectsagainstliverinjuryinliversurgeryinducedischaemiareperfusion |