Cargando…

Microbiota regulates the turnover kinetics of gut macrophages in health and inflammation

The gut immune system has evolved to co-exist in a mutually beneficial symbiotic relationship with its microflora. Here, using a germ-free fate-mapping mouse model, we provide clear insight into how the enteric commensals determine the kinetics of macrophage turnover. The microbiome density along th...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Qi, Nair, Sajith, Ruedl, Christiane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Life Science Alliance LLC 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572849/
https://www.ncbi.nlm.nih.gov/pubmed/34728557
http://dx.doi.org/10.26508/lsa.202101178
Descripción
Sumario:The gut immune system has evolved to co-exist in a mutually beneficial symbiotic relationship with its microflora. Here, using a germ-free fate-mapping mouse model, we provide clear insight into how the enteric commensals determine the kinetics of macrophage turnover. The microbiome density along the gastrointestinal tract defines the persistence of ontogenically diverse macrophages, with the highest numbers of the long-lived F4/80(hi)Tim4(+) macrophage subset in the less densely colonized small intestine. Furthermore, the microbiome contributes to a tightly regulated monocyte-dependent replenishment of both long- and short-lived F4/80(hi) macrophages under homeostatic and inflammatory conditions. In the latter situation, the commensals regulate rapid replenishment of the depleted macrophage niche caused by the intestinal inflammation. The microbial ecosystem imprints a favorable cytokine microenvironment in the intestine to support macrophage survival and monocyte-dependent replenishment. Therefore, the host immune system-commensal cross-talk provides an efficient strategy to assure intestinal homeostasis.