Cargando…
Microbiota regulates the turnover kinetics of gut macrophages in health and inflammation
The gut immune system has evolved to co-exist in a mutually beneficial symbiotic relationship with its microflora. Here, using a germ-free fate-mapping mouse model, we provide clear insight into how the enteric commensals determine the kinetics of macrophage turnover. The microbiome density along th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572849/ https://www.ncbi.nlm.nih.gov/pubmed/34728557 http://dx.doi.org/10.26508/lsa.202101178 |
_version_ | 1784595300437983232 |
---|---|
author | Chen, Qi Nair, Sajith Ruedl, Christiane |
author_facet | Chen, Qi Nair, Sajith Ruedl, Christiane |
author_sort | Chen, Qi |
collection | PubMed |
description | The gut immune system has evolved to co-exist in a mutually beneficial symbiotic relationship with its microflora. Here, using a germ-free fate-mapping mouse model, we provide clear insight into how the enteric commensals determine the kinetics of macrophage turnover. The microbiome density along the gastrointestinal tract defines the persistence of ontogenically diverse macrophages, with the highest numbers of the long-lived F4/80(hi)Tim4(+) macrophage subset in the less densely colonized small intestine. Furthermore, the microbiome contributes to a tightly regulated monocyte-dependent replenishment of both long- and short-lived F4/80(hi) macrophages under homeostatic and inflammatory conditions. In the latter situation, the commensals regulate rapid replenishment of the depleted macrophage niche caused by the intestinal inflammation. The microbial ecosystem imprints a favorable cytokine microenvironment in the intestine to support macrophage survival and monocyte-dependent replenishment. Therefore, the host immune system-commensal cross-talk provides an efficient strategy to assure intestinal homeostasis. |
format | Online Article Text |
id | pubmed-8572849 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Life Science Alliance LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-85728492021-11-16 Microbiota regulates the turnover kinetics of gut macrophages in health and inflammation Chen, Qi Nair, Sajith Ruedl, Christiane Life Sci Alliance Research Articles The gut immune system has evolved to co-exist in a mutually beneficial symbiotic relationship with its microflora. Here, using a germ-free fate-mapping mouse model, we provide clear insight into how the enteric commensals determine the kinetics of macrophage turnover. The microbiome density along the gastrointestinal tract defines the persistence of ontogenically diverse macrophages, with the highest numbers of the long-lived F4/80(hi)Tim4(+) macrophage subset in the less densely colonized small intestine. Furthermore, the microbiome contributes to a tightly regulated monocyte-dependent replenishment of both long- and short-lived F4/80(hi) macrophages under homeostatic and inflammatory conditions. In the latter situation, the commensals regulate rapid replenishment of the depleted macrophage niche caused by the intestinal inflammation. The microbial ecosystem imprints a favorable cytokine microenvironment in the intestine to support macrophage survival and monocyte-dependent replenishment. Therefore, the host immune system-commensal cross-talk provides an efficient strategy to assure intestinal homeostasis. Life Science Alliance LLC 2021-11-02 /pmc/articles/PMC8572849/ /pubmed/34728557 http://dx.doi.org/10.26508/lsa.202101178 Text en © 2021 Chen et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Articles Chen, Qi Nair, Sajith Ruedl, Christiane Microbiota regulates the turnover kinetics of gut macrophages in health and inflammation |
title | Microbiota regulates the turnover kinetics of gut macrophages in health and inflammation |
title_full | Microbiota regulates the turnover kinetics of gut macrophages in health and inflammation |
title_fullStr | Microbiota regulates the turnover kinetics of gut macrophages in health and inflammation |
title_full_unstemmed | Microbiota regulates the turnover kinetics of gut macrophages in health and inflammation |
title_short | Microbiota regulates the turnover kinetics of gut macrophages in health and inflammation |
title_sort | microbiota regulates the turnover kinetics of gut macrophages in health and inflammation |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572849/ https://www.ncbi.nlm.nih.gov/pubmed/34728557 http://dx.doi.org/10.26508/lsa.202101178 |
work_keys_str_mv | AT chenqi microbiotaregulatestheturnoverkineticsofgutmacrophagesinhealthandinflammation AT nairsajith microbiotaregulatestheturnoverkineticsofgutmacrophagesinhealthandinflammation AT ruedlchristiane microbiotaregulatestheturnoverkineticsofgutmacrophagesinhealthandinflammation |