Cargando…

Genetic testing for familial hypercholesterolemia—past, present, and future

In the early 1980s, the Nobel Prize winning cellular and molecular work of Mike Brown and Joe Goldstein led to the identification of the LDL receptor gene as the first gene where mutations cause the familial hypercholesterolemia (FH) phenotype. We now know that autosomal dominant monogenic FH can be...

Descripción completa

Detalles Bibliográficos
Autores principales: Futema, Marta, Taylor-Beadling, Alison, Williams, Maggie, Humphries, Steve E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572866/
https://www.ncbi.nlm.nih.gov/pubmed/34666015
http://dx.doi.org/10.1016/j.jlr.2021.100139
_version_ 1784595304563081216
author Futema, Marta
Taylor-Beadling, Alison
Williams, Maggie
Humphries, Steve E.
author_facet Futema, Marta
Taylor-Beadling, Alison
Williams, Maggie
Humphries, Steve E.
author_sort Futema, Marta
collection PubMed
description In the early 1980s, the Nobel Prize winning cellular and molecular work of Mike Brown and Joe Goldstein led to the identification of the LDL receptor gene as the first gene where mutations cause the familial hypercholesterolemia (FH) phenotype. We now know that autosomal dominant monogenic FH can be caused by pathogenic variants of three additional genes (APOB/PCSK9/APOE) and that the plasma LDL-C concentration and risk of premature coronary heart disease differs according to the specific locus and associated molecular cause. It is now possible to use next-generation sequencing to sequence all exons of all four genes, processing 96 patient samples in one sequencing run, increasing the speed of test results, and reducing costs. This has resulted in the identification of not only many novel FH-causing variants but also some variants of unknown significance, which require further evidence to classify as pathogenic or benign. The identification of the FH-causing variant in an index case can be used as an unambiguous and rapid test for other family members. An FH-causing variant can be found in 20–40% of patients with the FH phenotype, and we now appreciate that in the majority of patients without a monogenic cause, a polygenic etiology for their phenotype is highly likely. Compared with those with a monogenic cause, these patients have significantly lower risk of future coronary heart disease. The use of these molecular genetic diagnostic methods in the characterization of FH is a prime example of the utility of precision or personalized medicine.
format Online
Article
Text
id pubmed-8572866
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-85728662021-11-10 Genetic testing for familial hypercholesterolemia—past, present, and future Futema, Marta Taylor-Beadling, Alison Williams, Maggie Humphries, Steve E. J Lipid Res Thematic Review Series In the early 1980s, the Nobel Prize winning cellular and molecular work of Mike Brown and Joe Goldstein led to the identification of the LDL receptor gene as the first gene where mutations cause the familial hypercholesterolemia (FH) phenotype. We now know that autosomal dominant monogenic FH can be caused by pathogenic variants of three additional genes (APOB/PCSK9/APOE) and that the plasma LDL-C concentration and risk of premature coronary heart disease differs according to the specific locus and associated molecular cause. It is now possible to use next-generation sequencing to sequence all exons of all four genes, processing 96 patient samples in one sequencing run, increasing the speed of test results, and reducing costs. This has resulted in the identification of not only many novel FH-causing variants but also some variants of unknown significance, which require further evidence to classify as pathogenic or benign. The identification of the FH-causing variant in an index case can be used as an unambiguous and rapid test for other family members. An FH-causing variant can be found in 20–40% of patients with the FH phenotype, and we now appreciate that in the majority of patients without a monogenic cause, a polygenic etiology for their phenotype is highly likely. Compared with those with a monogenic cause, these patients have significantly lower risk of future coronary heart disease. The use of these molecular genetic diagnostic methods in the characterization of FH is a prime example of the utility of precision or personalized medicine. American Society for Biochemistry and Molecular Biology 2021-10-16 /pmc/articles/PMC8572866/ /pubmed/34666015 http://dx.doi.org/10.1016/j.jlr.2021.100139 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Thematic Review Series
Futema, Marta
Taylor-Beadling, Alison
Williams, Maggie
Humphries, Steve E.
Genetic testing for familial hypercholesterolemia—past, present, and future
title Genetic testing for familial hypercholesterolemia—past, present, and future
title_full Genetic testing for familial hypercholesterolemia—past, present, and future
title_fullStr Genetic testing for familial hypercholesterolemia—past, present, and future
title_full_unstemmed Genetic testing for familial hypercholesterolemia—past, present, and future
title_short Genetic testing for familial hypercholesterolemia—past, present, and future
title_sort genetic testing for familial hypercholesterolemia—past, present, and future
topic Thematic Review Series
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572866/
https://www.ncbi.nlm.nih.gov/pubmed/34666015
http://dx.doi.org/10.1016/j.jlr.2021.100139
work_keys_str_mv AT futemamarta genetictestingforfamilialhypercholesterolemiapastpresentandfuture
AT taylorbeadlingalison genetictestingforfamilialhypercholesterolemiapastpresentandfuture
AT williamsmaggie genetictestingforfamilialhypercholesterolemiapastpresentandfuture
AT humphriesstevee genetictestingforfamilialhypercholesterolemiapastpresentandfuture