Cargando…
Contextualizing Genes by Using Text-Mined Co-Occurrence Features for Cancer Gene Panel Discovery
Developing a biomedical-explainable and validatable text mining pipeline can help in cancer gene panel discovery. We create a pipeline that can contextualize genes by using text-mined co-occurrence features. We apply Biomedical Natural Language Processing (BioNLP) techniques for literature mining in...
Autores principales: | Chen, Hui-O, Lin, Peng-Chan, Liu, Chen-Ruei, Wang, Chi-Shiang, Chiang, Jung-Hsien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573063/ https://www.ncbi.nlm.nih.gov/pubmed/34759963 http://dx.doi.org/10.3389/fgene.2021.771435 |
Ejemplares similares
-
Drug Discovery in Spinal Cord Injury With Ankylosing Spondylitis Identified by Text Mining and Biomedical Databases
por: Wang, Chenfeng, et al.
Publicado: (2022) -
Sequential pattern mining for discovering gene interactions and their contextual information from biomedical texts
por: Cellier, Peggy, et al.
Publicado: (2015) -
Sentimental text mining based on an additional features method for text classification
por: Cheng, Ching-Hsue, et al.
Publicado: (2019) -
Embedding of Genes Using Cancer Gene Expression Data: Biological Relevance and Potential Application on Biomarker Discovery
por: Choy, Chi Tung, et al.
Publicado: (2019) -
EnvMine: A text-mining system for the automatic extraction of contextual information
por: Tamames, Javier, et al.
Publicado: (2010)