Cargando…
A dataset for multi-sensor drone detection
The use of small and remotely controlled unmanned aerial vehicles (UAVs), referred to as drones, has increased dramatically in recent years, both for professional and recreative purposes. This goes in parallel with (intentional or unintentional) misuse episodes, with an evident threat to the safety...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573135/ https://www.ncbi.nlm.nih.gov/pubmed/34765710 http://dx.doi.org/10.1016/j.dib.2021.107521 |
_version_ | 1784595356667871232 |
---|---|
author | Svanström, Fredrik Alonso-Fernandez, Fernando Englund, Cristofer |
author_facet | Svanström, Fredrik Alonso-Fernandez, Fernando Englund, Cristofer |
author_sort | Svanström, Fredrik |
collection | PubMed |
description | The use of small and remotely controlled unmanned aerial vehicles (UAVs), referred to as drones, has increased dramatically in recent years, both for professional and recreative purposes. This goes in parallel with (intentional or unintentional) misuse episodes, with an evident threat to the safety of people or facilities [1]. As a result, the detection of UAV has also emerged as a research topic [2]. Most of the existing studies on drone detection fail to specify the type of acquisition device, the drone type, the detection range, or the employed dataset. The lack of proper UAV detection studies employing thermal infrared cameras is also acknowledged as an issue, despite its success in detecting other types of targets [2]. Beside, we have not found any previous study that addresses the detection task as a function of distance to the target. Sensor fusion is indicated as an open research issue as well to achieve better detection results in comparison to a single sensor, although research in this direction is scarce too [3], [4], [5], [6]. To help in counteracting the mentioned issues and allow fundamental studies with a common public benchmark, we contribute with an annotated multi-sensor database for drone detection that includes infrared and visible videos and audio files. The database includes three different drones, a small-sized model (Hubsan H107D+), a medium-sized drone (DJI Flame Wheel in quadcopter configuration), and a performance-grade model (DJI Phantom 4 Pro). It also includes other flying objects that can be mistakenly detected as drones, such as birds, airplanes or helicopters. In addition to using several different sensors, the number of classes is higher than in previous studies [4]. The video part contains 650 infrared and visible videos (365 IR and 285 visible) of drones, birds, airplanes and helicopters. Each clip is of ten seconds, resulting in a total of 203,328 annotated frames. The database is complemented with 90 audio files of the classes drones, helicopters and background noise. To allow studies as a function of the sensor-to-target distance, the dataset is divided into three categories (Close, Medium, Distant) according to the industry-standard Detect, Recognize and Identify (DRI) requirements [7], built on the Johnson criteria [8]. Given that the drones must be flown within visual range due to regulations, the largest sensor-to-target distance for a drone in the dataset is 200 m, and acquisitions are made in daylight. The data has been obtained at three airports in Sweden: Halmstad Airport (IATA code: HAD/ICAO code: ESMT), Gothenburg City Airport (GSE/ESGP) and Malmö Airport (MMX/ESMS). The acquisition sensors are mounted on a pan-tilt platform that steers the cameras to the objects of interest. All sensors and the platform are controlled with a standard laptop vis a USB hub. |
format | Online Article Text |
id | pubmed-8573135 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-85731352021-11-10 A dataset for multi-sensor drone detection Svanström, Fredrik Alonso-Fernandez, Fernando Englund, Cristofer Data Brief Data Article The use of small and remotely controlled unmanned aerial vehicles (UAVs), referred to as drones, has increased dramatically in recent years, both for professional and recreative purposes. This goes in parallel with (intentional or unintentional) misuse episodes, with an evident threat to the safety of people or facilities [1]. As a result, the detection of UAV has also emerged as a research topic [2]. Most of the existing studies on drone detection fail to specify the type of acquisition device, the drone type, the detection range, or the employed dataset. The lack of proper UAV detection studies employing thermal infrared cameras is also acknowledged as an issue, despite its success in detecting other types of targets [2]. Beside, we have not found any previous study that addresses the detection task as a function of distance to the target. Sensor fusion is indicated as an open research issue as well to achieve better detection results in comparison to a single sensor, although research in this direction is scarce too [3], [4], [5], [6]. To help in counteracting the mentioned issues and allow fundamental studies with a common public benchmark, we contribute with an annotated multi-sensor database for drone detection that includes infrared and visible videos and audio files. The database includes three different drones, a small-sized model (Hubsan H107D+), a medium-sized drone (DJI Flame Wheel in quadcopter configuration), and a performance-grade model (DJI Phantom 4 Pro). It also includes other flying objects that can be mistakenly detected as drones, such as birds, airplanes or helicopters. In addition to using several different sensors, the number of classes is higher than in previous studies [4]. The video part contains 650 infrared and visible videos (365 IR and 285 visible) of drones, birds, airplanes and helicopters. Each clip is of ten seconds, resulting in a total of 203,328 annotated frames. The database is complemented with 90 audio files of the classes drones, helicopters and background noise. To allow studies as a function of the sensor-to-target distance, the dataset is divided into three categories (Close, Medium, Distant) according to the industry-standard Detect, Recognize and Identify (DRI) requirements [7], built on the Johnson criteria [8]. Given that the drones must be flown within visual range due to regulations, the largest sensor-to-target distance for a drone in the dataset is 200 m, and acquisitions are made in daylight. The data has been obtained at three airports in Sweden: Halmstad Airport (IATA code: HAD/ICAO code: ESMT), Gothenburg City Airport (GSE/ESGP) and Malmö Airport (MMX/ESMS). The acquisition sensors are mounted on a pan-tilt platform that steers the cameras to the objects of interest. All sensors and the platform are controlled with a standard laptop vis a USB hub. Elsevier 2021-10-27 /pmc/articles/PMC8573135/ /pubmed/34765710 http://dx.doi.org/10.1016/j.dib.2021.107521 Text en © 2021 The Author(s). Published by Elsevier Inc. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Data Article Svanström, Fredrik Alonso-Fernandez, Fernando Englund, Cristofer A dataset for multi-sensor drone detection |
title | A dataset for multi-sensor drone detection |
title_full | A dataset for multi-sensor drone detection |
title_fullStr | A dataset for multi-sensor drone detection |
title_full_unstemmed | A dataset for multi-sensor drone detection |
title_short | A dataset for multi-sensor drone detection |
title_sort | dataset for multi-sensor drone detection |
topic | Data Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573135/ https://www.ncbi.nlm.nih.gov/pubmed/34765710 http://dx.doi.org/10.1016/j.dib.2021.107521 |
work_keys_str_mv | AT svanstromfredrik adatasetformultisensordronedetection AT alonsofernandezfernando adatasetformultisensordronedetection AT englundcristofer adatasetformultisensordronedetection AT svanstromfredrik datasetformultisensordronedetection AT alonsofernandezfernando datasetformultisensordronedetection AT englundcristofer datasetformultisensordronedetection |