Cargando…
Electrospun Fiber Alignment Guides Osteogenesis and Matrix Organization Differentially in Two Different Osteogenic Cell Types
Biomimetic replication of the structural anisotropy of musculoskeletal tissues is important to restore proper tissue mechanics and function. Physical cues from the local micro-environment, such as matrix fiber orientation, may influence the differentiation and extracellular matrix (ECM) organization...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573409/ https://www.ncbi.nlm.nih.gov/pubmed/34760876 http://dx.doi.org/10.3389/fbioe.2021.672959 |
_version_ | 1784595416226988032 |
---|---|
author | Delaine-Smith, Robin M. Hann, Alice Jane Green, Nicola H. Reilly, Gwendolen Clair |
author_facet | Delaine-Smith, Robin M. Hann, Alice Jane Green, Nicola H. Reilly, Gwendolen Clair |
author_sort | Delaine-Smith, Robin M. |
collection | PubMed |
description | Biomimetic replication of the structural anisotropy of musculoskeletal tissues is important to restore proper tissue mechanics and function. Physical cues from the local micro-environment, such as matrix fiber orientation, may influence the differentiation and extracellular matrix (ECM) organization of osteogenic progenitor cells. This study investigates how scaffold fiber orientation affects the behavior of mature and progenitor osteogenic cells, the influence on secreted mineralized-collagenous matrix organization, and the resulting construct mechanical properties. Gelatin-coated electrospun poly(caprolactone) fibrous scaffolds were fabricated with either a low or a high degree of anisotropy and cultured with mature osteoblasts (MLO-A5s) or osteogenic mesenchymal progenitor cells (hES-MPs). For MLO-A5 cells, alkaline phosphatase (ALP) activity was highest, and more calcium-containing matrix was deposited onto aligned scaffolds. In contrast, hES-MPs, osteogenic mesenchymal progenitor cells, exhibited higher ALP activity, collagen, and calcium deposition on randomly orientated fibers compared with aligned counterparts. Deposited matrix was isotropic on random fibrous scaffolds, whereas a greater degree of anisotropy was observed in aligned fibrous constructs, as confirmed by second harmonic generation (SHG) and scanning electron microscope (SEM) imaging. This resulted in anisotropic mechanical properties on aligned constructs. This study indicates that mineralized-matrix deposition by osteoblasts can be controlled by scaffold alignment but that the early stages of osteogenesis may not benefit from culture on orientated scaffolds. |
format | Online Article Text |
id | pubmed-8573409 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85734092021-11-09 Electrospun Fiber Alignment Guides Osteogenesis and Matrix Organization Differentially in Two Different Osteogenic Cell Types Delaine-Smith, Robin M. Hann, Alice Jane Green, Nicola H. Reilly, Gwendolen Clair Front Bioeng Biotechnol Bioengineering and Biotechnology Biomimetic replication of the structural anisotropy of musculoskeletal tissues is important to restore proper tissue mechanics and function. Physical cues from the local micro-environment, such as matrix fiber orientation, may influence the differentiation and extracellular matrix (ECM) organization of osteogenic progenitor cells. This study investigates how scaffold fiber orientation affects the behavior of mature and progenitor osteogenic cells, the influence on secreted mineralized-collagenous matrix organization, and the resulting construct mechanical properties. Gelatin-coated electrospun poly(caprolactone) fibrous scaffolds were fabricated with either a low or a high degree of anisotropy and cultured with mature osteoblasts (MLO-A5s) or osteogenic mesenchymal progenitor cells (hES-MPs). For MLO-A5 cells, alkaline phosphatase (ALP) activity was highest, and more calcium-containing matrix was deposited onto aligned scaffolds. In contrast, hES-MPs, osteogenic mesenchymal progenitor cells, exhibited higher ALP activity, collagen, and calcium deposition on randomly orientated fibers compared with aligned counterparts. Deposited matrix was isotropic on random fibrous scaffolds, whereas a greater degree of anisotropy was observed in aligned fibrous constructs, as confirmed by second harmonic generation (SHG) and scanning electron microscope (SEM) imaging. This resulted in anisotropic mechanical properties on aligned constructs. This study indicates that mineralized-matrix deposition by osteoblasts can be controlled by scaffold alignment but that the early stages of osteogenesis may not benefit from culture on orientated scaffolds. Frontiers Media S.A. 2021-10-25 /pmc/articles/PMC8573409/ /pubmed/34760876 http://dx.doi.org/10.3389/fbioe.2021.672959 Text en Copyright © 2021 Delaine-Smith, Hann, Green and Reilly. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Delaine-Smith, Robin M. Hann, Alice Jane Green, Nicola H. Reilly, Gwendolen Clair Electrospun Fiber Alignment Guides Osteogenesis and Matrix Organization Differentially in Two Different Osteogenic Cell Types |
title | Electrospun Fiber Alignment Guides Osteogenesis and Matrix Organization Differentially in Two Different Osteogenic Cell Types |
title_full | Electrospun Fiber Alignment Guides Osteogenesis and Matrix Organization Differentially in Two Different Osteogenic Cell Types |
title_fullStr | Electrospun Fiber Alignment Guides Osteogenesis and Matrix Organization Differentially in Two Different Osteogenic Cell Types |
title_full_unstemmed | Electrospun Fiber Alignment Guides Osteogenesis and Matrix Organization Differentially in Two Different Osteogenic Cell Types |
title_short | Electrospun Fiber Alignment Guides Osteogenesis and Matrix Organization Differentially in Two Different Osteogenic Cell Types |
title_sort | electrospun fiber alignment guides osteogenesis and matrix organization differentially in two different osteogenic cell types |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573409/ https://www.ncbi.nlm.nih.gov/pubmed/34760876 http://dx.doi.org/10.3389/fbioe.2021.672959 |
work_keys_str_mv | AT delainesmithrobinm electrospunfiberalignmentguidesosteogenesisandmatrixorganizationdifferentiallyintwodifferentosteogeniccelltypes AT hannalicejane electrospunfiberalignmentguidesosteogenesisandmatrixorganizationdifferentiallyintwodifferentosteogeniccelltypes AT greennicolah electrospunfiberalignmentguidesosteogenesisandmatrixorganizationdifferentiallyintwodifferentosteogeniccelltypes AT reillygwendolenclair electrospunfiberalignmentguidesosteogenesisandmatrixorganizationdifferentiallyintwodifferentosteogeniccelltypes |