Cargando…
Variations in the tropospheric concentration of NO(2) in the central west of Brazil, MS, and their relationship with the COVID-19
COVID-19 (coronavirus disease 2019) started in late 2019 in Wuhan, China. Subsequently, the disease was disseminated in several cities around the world, where measures were taken to control the spread of the virus through the adoption of quarantine (social isolation and closure of commercial sectors...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573569/ https://www.ncbi.nlm.nih.gov/pubmed/34777630 http://dx.doi.org/10.1007/s11869-021-01121-8 |
Sumario: | COVID-19 (coronavirus disease 2019) started in late 2019 in Wuhan, China. Subsequently, the disease was disseminated in several cities around the world, where measures were taken to control the spread of the virus through the adoption of quarantine (social isolation and closure of commercial sectors). This article analyzed the environmental impact of the COVID-19 outbreak in the state of Mato Grosso do Sul, Brazil, regarding the variations of nitrogen dioxide (NO(2)) in the atmosphere. NO(2) data from the AURA satellite, in the period before the beginning of the epidemic (2005–2019) and during the adoption of the preventive and control measures of COVID-19 in 2020, were acquired and compared. The results obtained from the analysis showed that the blockade from COVID-19, beginning in March 2020, improved air quality in the short term, but as soon as coal consumption in power plants and refineries returned to normal levels (since June 2020), due to the resumption of works, the pollution levels returned to the level of the previous years of 2020. NO(2) levels showed a significant decrease, since they were mainly associated with the decrease in economic growth and transport restrictions that led to a change in energy consumption and a reduction in emissions. This study can complement the scientific community and policy makers for environmental protection and public management, not only to assess the impact of the outbreak on air quality, but also for its effectiveness as a simple alternative program of action to improve air quality. |
---|