Cargando…
Comparison of domain adaptation techniques for white matter hyperintensity segmentation in brain MR images
Robust automated segmentation of white matter hyperintensities (WMHs) in different datasets (domains) is highly challenging due to differences in acquisition (scanner, sequence), population (WMH amount and location) and limited availability of manual segmentations to train supervised algorithms. In...
Autores principales: | Sundaresan, Vaanathi, Zamboni, Giovanna, Dinsdale, Nicola K., Rothwell, Peter M., Griffanti, Ludovica, Jenkinson, Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573594/ https://www.ncbi.nlm.nih.gov/pubmed/34454295 http://dx.doi.org/10.1016/j.media.2021.102215 |
Ejemplares similares
-
Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images
por: Sundaresan, Vaanathi, et al.
Publicado: (2021) -
Modelling the distribution of white matter hyperintensities due to ageing on MRI images using Bayesian inference
por: Sundaresan, Vaanathi, et al.
Publicado: (2019) -
BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities
por: Griffanti, Ludovica, et al.
Publicado: (2016) -
Automated lesion segmentation with BIANCA: Impact of population-level features, classification algorithm and locally adaptive thresholding
por: Sundaresan, Vaanathi, et al.
Publicado: (2019) -
White matter hyperintensities classified according to intensity and spatial location reveal specific associations with cognitive performance
por: Melazzini, Luca, et al.
Publicado: (2021)