Cargando…

Going Beyond the Limits of Classical Atomistic Modeling of Plasmonic Nanostructures

[Image: see text] Theoretical modeling of plasmonic phenomena is of fundamental importance for rationalizing experimental measurements. Despite the great success of classical continuum modeling, recent technological advances allowing for the fabrication of structures defined at the atomic level requ...

Descripción completa

Detalles Bibliográficos
Autores principales: Lafiosca, Piero, Giovannini, Tommaso, Benzi, Michele, Cappelli, Chiara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573767/
https://www.ncbi.nlm.nih.gov/pubmed/34765073
http://dx.doi.org/10.1021/acs.jpcc.1c04716
Descripción
Sumario:[Image: see text] Theoretical modeling of plasmonic phenomena is of fundamental importance for rationalizing experimental measurements. Despite the great success of classical continuum modeling, recent technological advances allowing for the fabrication of structures defined at the atomic level require to be modeled through atomistic approaches. From a computational point of view, the latter approaches are generally associated with high computational costs, which have substantially hampered their extensive use. In this work, we report on a computationally fast formulation of a classical, fully atomistic approach, able to accurately describe both metal nanoparticles and graphene-like nanostructures composed of roughly 1 million atoms and characterized by structural defects.