Cargando…

Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research

Single-cell RNA sequencing (scRNA-seq) revolutionized our understanding of disease biology. The promise it presents to also transform translational research requires highly standardized and robust software workflows. Here, we present the toolkit Besca, which streamlines scRNA-seq analyses and their...

Descripción completa

Detalles Bibliográficos
Autores principales: Mädler, Sophia Clara, Julien-Laferriere, Alice, Wyss, Luis, Phan, Miroslav, Sonrel, Anthony, Kang, Albert S W, Ulrich, Eric, Schmucki, Roland, Zhang, Jitao David, Ebeling, Martin, Badi, Laura, Kam-Thong, Tony, Schwalie, Petra C, Hatje, Klas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573822/
https://www.ncbi.nlm.nih.gov/pubmed/34761219
http://dx.doi.org/10.1093/nargab/lqab102
_version_ 1784595495935541248
author Mädler, Sophia Clara
Julien-Laferriere, Alice
Wyss, Luis
Phan, Miroslav
Sonrel, Anthony
Kang, Albert S W
Ulrich, Eric
Schmucki, Roland
Zhang, Jitao David
Ebeling, Martin
Badi, Laura
Kam-Thong, Tony
Schwalie, Petra C
Hatje, Klas
author_facet Mädler, Sophia Clara
Julien-Laferriere, Alice
Wyss, Luis
Phan, Miroslav
Sonrel, Anthony
Kang, Albert S W
Ulrich, Eric
Schmucki, Roland
Zhang, Jitao David
Ebeling, Martin
Badi, Laura
Kam-Thong, Tony
Schwalie, Petra C
Hatje, Klas
author_sort Mädler, Sophia Clara
collection PubMed
description Single-cell RNA sequencing (scRNA-seq) revolutionized our understanding of disease biology. The promise it presents to also transform translational research requires highly standardized and robust software workflows. Here, we present the toolkit Besca, which streamlines scRNA-seq analyses and their use to deconvolute bulk RNA-seq data according to current best practices. Beyond a standard workflow covering quality control, filtering, and clustering, two complementary Besca modules, utilizing hierarchical cell signatures and supervised machine learning, automate cell annotation and provide harmonized nomenclatures. Subsequently, the gene expression profiles can be employed to estimate cell type proportions in bulk transcriptomics data. Using multiple, diverse scRNA-seq datasets, some stemming from highly heterogeneous tumor tissue, we show how Besca aids acceleration, interoperability, reusability and interpretability of scRNA-seq data analyses, meeting crucial demands in translational research and beyond.
format Online
Article
Text
id pubmed-8573822
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-85738222021-11-09 Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research Mädler, Sophia Clara Julien-Laferriere, Alice Wyss, Luis Phan, Miroslav Sonrel, Anthony Kang, Albert S W Ulrich, Eric Schmucki, Roland Zhang, Jitao David Ebeling, Martin Badi, Laura Kam-Thong, Tony Schwalie, Petra C Hatje, Klas NAR Genom Bioinform Methart Single-cell RNA sequencing (scRNA-seq) revolutionized our understanding of disease biology. The promise it presents to also transform translational research requires highly standardized and robust software workflows. Here, we present the toolkit Besca, which streamlines scRNA-seq analyses and their use to deconvolute bulk RNA-seq data according to current best practices. Beyond a standard workflow covering quality control, filtering, and clustering, two complementary Besca modules, utilizing hierarchical cell signatures and supervised machine learning, automate cell annotation and provide harmonized nomenclatures. Subsequently, the gene expression profiles can be employed to estimate cell type proportions in bulk transcriptomics data. Using multiple, diverse scRNA-seq datasets, some stemming from highly heterogeneous tumor tissue, we show how Besca aids acceleration, interoperability, reusability and interpretability of scRNA-seq data analyses, meeting crucial demands in translational research and beyond. Oxford University Press 2021-11-08 /pmc/articles/PMC8573822/ /pubmed/34761219 http://dx.doi.org/10.1093/nargab/lqab102 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Methart
Mädler, Sophia Clara
Julien-Laferriere, Alice
Wyss, Luis
Phan, Miroslav
Sonrel, Anthony
Kang, Albert S W
Ulrich, Eric
Schmucki, Roland
Zhang, Jitao David
Ebeling, Martin
Badi, Laura
Kam-Thong, Tony
Schwalie, Petra C
Hatje, Klas
Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research
title Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research
title_full Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research
title_fullStr Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research
title_full_unstemmed Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research
title_short Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research
title_sort besca, a single-cell transcriptomics analysis toolkit to accelerate translational research
topic Methart
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573822/
https://www.ncbi.nlm.nih.gov/pubmed/34761219
http://dx.doi.org/10.1093/nargab/lqab102
work_keys_str_mv AT madlersophiaclara bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch
AT julienlaferrierealice bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch
AT wyssluis bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch
AT phanmiroslav bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch
AT sonrelanthony bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch
AT kangalbertsw bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch
AT ulricheric bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch
AT schmuckiroland bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch
AT zhangjitaodavid bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch
AT ebelingmartin bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch
AT badilaura bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch
AT kamthongtony bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch
AT schwaliepetrac bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch
AT hatjeklas bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch