Cargando…
Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research
Single-cell RNA sequencing (scRNA-seq) revolutionized our understanding of disease biology. The promise it presents to also transform translational research requires highly standardized and robust software workflows. Here, we present the toolkit Besca, which streamlines scRNA-seq analyses and their...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573822/ https://www.ncbi.nlm.nih.gov/pubmed/34761219 http://dx.doi.org/10.1093/nargab/lqab102 |
_version_ | 1784595495935541248 |
---|---|
author | Mädler, Sophia Clara Julien-Laferriere, Alice Wyss, Luis Phan, Miroslav Sonrel, Anthony Kang, Albert S W Ulrich, Eric Schmucki, Roland Zhang, Jitao David Ebeling, Martin Badi, Laura Kam-Thong, Tony Schwalie, Petra C Hatje, Klas |
author_facet | Mädler, Sophia Clara Julien-Laferriere, Alice Wyss, Luis Phan, Miroslav Sonrel, Anthony Kang, Albert S W Ulrich, Eric Schmucki, Roland Zhang, Jitao David Ebeling, Martin Badi, Laura Kam-Thong, Tony Schwalie, Petra C Hatje, Klas |
author_sort | Mädler, Sophia Clara |
collection | PubMed |
description | Single-cell RNA sequencing (scRNA-seq) revolutionized our understanding of disease biology. The promise it presents to also transform translational research requires highly standardized and robust software workflows. Here, we present the toolkit Besca, which streamlines scRNA-seq analyses and their use to deconvolute bulk RNA-seq data according to current best practices. Beyond a standard workflow covering quality control, filtering, and clustering, two complementary Besca modules, utilizing hierarchical cell signatures and supervised machine learning, automate cell annotation and provide harmonized nomenclatures. Subsequently, the gene expression profiles can be employed to estimate cell type proportions in bulk transcriptomics data. Using multiple, diverse scRNA-seq datasets, some stemming from highly heterogeneous tumor tissue, we show how Besca aids acceleration, interoperability, reusability and interpretability of scRNA-seq data analyses, meeting crucial demands in translational research and beyond. |
format | Online Article Text |
id | pubmed-8573822 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-85738222021-11-09 Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research Mädler, Sophia Clara Julien-Laferriere, Alice Wyss, Luis Phan, Miroslav Sonrel, Anthony Kang, Albert S W Ulrich, Eric Schmucki, Roland Zhang, Jitao David Ebeling, Martin Badi, Laura Kam-Thong, Tony Schwalie, Petra C Hatje, Klas NAR Genom Bioinform Methart Single-cell RNA sequencing (scRNA-seq) revolutionized our understanding of disease biology. The promise it presents to also transform translational research requires highly standardized and robust software workflows. Here, we present the toolkit Besca, which streamlines scRNA-seq analyses and their use to deconvolute bulk RNA-seq data according to current best practices. Beyond a standard workflow covering quality control, filtering, and clustering, two complementary Besca modules, utilizing hierarchical cell signatures and supervised machine learning, automate cell annotation and provide harmonized nomenclatures. Subsequently, the gene expression profiles can be employed to estimate cell type proportions in bulk transcriptomics data. Using multiple, diverse scRNA-seq datasets, some stemming from highly heterogeneous tumor tissue, we show how Besca aids acceleration, interoperability, reusability and interpretability of scRNA-seq data analyses, meeting crucial demands in translational research and beyond. Oxford University Press 2021-11-08 /pmc/articles/PMC8573822/ /pubmed/34761219 http://dx.doi.org/10.1093/nargab/lqab102 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Methart Mädler, Sophia Clara Julien-Laferriere, Alice Wyss, Luis Phan, Miroslav Sonrel, Anthony Kang, Albert S W Ulrich, Eric Schmucki, Roland Zhang, Jitao David Ebeling, Martin Badi, Laura Kam-Thong, Tony Schwalie, Petra C Hatje, Klas Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research |
title | Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research |
title_full | Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research |
title_fullStr | Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research |
title_full_unstemmed | Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research |
title_short | Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research |
title_sort | besca, a single-cell transcriptomics analysis toolkit to accelerate translational research |
topic | Methart |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573822/ https://www.ncbi.nlm.nih.gov/pubmed/34761219 http://dx.doi.org/10.1093/nargab/lqab102 |
work_keys_str_mv | AT madlersophiaclara bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch AT julienlaferrierealice bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch AT wyssluis bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch AT phanmiroslav bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch AT sonrelanthony bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch AT kangalbertsw bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch AT ulricheric bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch AT schmuckiroland bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch AT zhangjitaodavid bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch AT ebelingmartin bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch AT badilaura bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch AT kamthongtony bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch AT schwaliepetrac bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch AT hatjeklas bescaasinglecelltranscriptomicsanalysistoolkittoacceleratetranslationalresearch |