Cargando…

Identifying Potentially Beneficial Genetic Mutations Associated with Monophyletic Selective Sweep and a Proof-of-Concept Study with Viral Genetic Data

Genetic mutations play a central role in evolution. For a significantly beneficial mutation, a one-time mutation event suffices for the species to prosper and predominate through the process called “monophyletic selective sweep.” However, existing methods that rely on counting the number of mutation...

Descripción completa

Detalles Bibliográficos
Autor principal: Furuse, Yuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573955/
https://www.ncbi.nlm.nih.gov/pubmed/33622855
http://dx.doi.org/10.1128/mSystems.01151-20
Descripción
Sumario:Genetic mutations play a central role in evolution. For a significantly beneficial mutation, a one-time mutation event suffices for the species to prosper and predominate through the process called “monophyletic selective sweep.” However, existing methods that rely on counting the number of mutation events to detect selection are unable to find such a mutation in selective sweep. We here introduce a method to detect mutations at the single amino acid/nucleotide level that could be responsible for monophyletic selective sweep evolution. The method identifies a genetic signature associated with selective sweep using the population genetic test statistic Tajima’s D. We applied the algorithm to ebolavirus, influenza A virus, and severe acute respiratory syndrome coronavirus 2 to identify known biologically significant mutations and unrecognized mutations associated with potential selective sweep. The method can detect beneficial mutations, possibly leading to discovery of previously unknown biological functions and mechanisms related to those mutations. IMPORTANCE In biology, research on evolution is important to understand the significance of genetic mutation. When there is a significantly beneficial mutation, a population of species with the mutation prospers and predominates, in a process called “selective sweep.” However, there are few methods that can find such a mutation causing selective sweep from genetic data. We here introduce a novel method to detect such mutations. Applying the method to the genomes of ebolavirus, influenza viruses, and the novel coronavirus, we detected known biologically significant mutations and identified mutations the importance of which is previously unrecognized. The method can deepen our understanding of molecular and evolutionary biology.