Cargando…
Classifying chest CT images as COVID-19 positive/negative using a convolutional neural network ensemble model and uniform experimental design method
BACKGROUND: To classify chest computed tomography (CT) images as positive or negative for coronavirus disease 2019 (COVID-19) quickly and accurately, researchers attempted to develop effective models by using medical images. RESULTS: A convolutional neural network (CNN) ensemble model was developed...
Autores principales: | Chen, Yao-Mei, Chen, Yenming J., Ho, Wen-Hsien, Tsai, Jinn-Tsong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574139/ https://www.ncbi.nlm.nih.gov/pubmed/34749629 http://dx.doi.org/10.1186/s12859-021-04083-x |
Ejemplares similares
-
Classifying microscopic images as acute lymphoblastic leukemia by Resnet ensemble model and Taguchi method
por: Chen, Yao-Mei, et al.
Publicado: (2022) -
Classification of age-related macular degeneration using convolutional-neural-network-based transfer learning
por: Chen, Yao-Mei, et al.
Publicado: (2021) -
Robust optimization of convolutional neural networks with a uniform experiment design method: a case of phonocardiogram testing in patients with heart diseases
por: Ho, Wen-Hsien, et al.
Publicado: (2021) -
Epidemic prediction of dengue fever based on vector compartment model and Markov chain Monte Carlo method
por: Lee, Chien-Hung, et al.
Publicado: (2021) -
Diagnosis of Alzheimer’s Disease with Ensemble Learning Classifier and 3D Convolutional Neural Network
por: Zhang, Peng, et al.
Publicado: (2021)