Cargando…
Clinical-Deep Neural Network and Clinical-Radiomics Nomograms for Predicting the Intraoperative Massive Blood Loss of Pelvic and Sacral Tumors
BACKGROUND: Patients with pelvic and sacral tumors are prone to massive blood loss (MBL) during surgery, which may endanger their lives. PURPOSES: This study aimed to determine the feasibility of using deep neural network (DNN) and radiomics nomogram (RN) based on 3D computed tomography (CT) feature...
Autores principales: | Yin, Ping, Sun, Chao, Wang, Sicong, Chen, Lei, Hong, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574215/ https://www.ncbi.nlm.nih.gov/pubmed/34760700 http://dx.doi.org/10.3389/fonc.2021.752672 |
Ejemplares similares
-
Radiomics Models for the Preoperative Prediction of Pelvic and Sacral Tumor Types: A Single-Center Retrospective Study of 795 Cases
por: Yin, Ping, et al.
Publicado: (2021) -
Machine and Deep Learning Based Radiomics Models for Preoperative Prediction of Benign and Malignant Sacral Tumors
por: Yin, Ping, et al.
Publicado: (2020) -
MRI-Based Bone Marrow Radiomics Nomogram for Prediction of Overall Survival in Patients With Multiple Myeloma
por: Li, Yang, et al.
Publicado: (2021) -
Clinical-radiomics nomogram for identifying HER2 status in patients with breast cancer: A multicenter study
por: Fang, Caiyun, et al.
Publicado: (2022) -
CT-Based Radiomics Signatures for Predicting the Risk Categorization of Thymic Epithelial Tumors
por: Liu, Jin, et al.
Publicado: (2021)