Cargando…
Synchronization in epidemic growth and the impossibility of selective containment
Containment, aiming to prevent the epidemic stage of community-spreading altogether, and mitigation, aiming to merely ‘flatten the curve’ of a wide-ranged outbreak, constitute two qualitatively different approaches to combating an epidemic through non-pharmaceutical interventions. Here, we study a s...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574313/ https://www.ncbi.nlm.nih.gov/pubmed/34695187 http://dx.doi.org/10.1093/imammb/dqab013 |
Sumario: | Containment, aiming to prevent the epidemic stage of community-spreading altogether, and mitigation, aiming to merely ‘flatten the curve’ of a wide-ranged outbreak, constitute two qualitatively different approaches to combating an epidemic through non-pharmaceutical interventions. Here, we study a simple model of epidemic dynamics separating the population into two groups, namely a low-risk group and a high-risk group, for which different strategies are pursued. Due to synchronization effects, we find that maintaining a slower epidemic growth behaviour for the high-risk group is unstable against any finite coupling between the two groups. More precisely, the density of infected individuals in the two groups qualitatively evolves very similarly, apart from a small time delay and an overall scaling factor quantifying the coupling between the groups. Hence, selective containment of the epidemic in a targeted (high-risk) group is practically impossible whenever the surrounding society implements a mitigated community-spreading. We relate our general findings to the ongoing COVID-19 pandemic. |
---|