Cargando…
EMNUSS: a deep learning framework for secondary structure annotation in cryo-EM maps
Cryo-electron microscopy (cryo-EM) has become one of important experimental methods in structure determination. However, despite the rapid growth in the number of deposited cryo-EM maps motivated by advances in microscopy instruments and image processing algorithms, building accurate structure model...
Autores principales: | He, Jiahua, Huang, Sheng-You |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574626/ https://www.ncbi.nlm.nih.gov/pubmed/33954706 http://dx.doi.org/10.1093/bib/bbab156 |
Ejemplares similares
-
Protein functional annotation of simultaneously improved stability, accuracy and false discovery rate achieved by a sequence-based deep learning
por: Hong, Jiajun, et al.
Publicado: (2019) -
OPUS-Rota4: a gradient-based protein side-chain modeling framework assisted by deep learning-based predictors
por: Xu, Gang, et al.
Publicado: (2021) -
RNAdegformer: accurate prediction of mRNA degradation at nucleotide resolution with deep learning
por: He, Shujun, et al.
Publicado: (2023) -
DeepImmuno: deep learning-empowered prediction and generation of immunogenic peptides for T-cell immunity
por: Li, Guangyuan, et al.
Publicado: (2021) -
Deciphering signatures of natural selection via deep learning
por: Qin, Xinghu, et al.
Publicado: (2022)