Cargando…
Comparison of sparse biclustering algorithms for gene expression datasets
MOTIVATION: Gene clustering and sample clustering are commonly used to find patterns in gene expression datasets. However, genes may cluster differently in heterogeneous samples (e.g. different tissues or disease states), whilst traditional methods assume that clusters are consistent across samples....
Autores principales: | Nicholls, Kath, Wallace, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574648/ https://www.ncbi.nlm.nih.gov/pubmed/33951731 http://dx.doi.org/10.1093/bib/bbab140 |
Ejemplares similares
-
A comparison and evaluation of five biclustering algorithms by quantifying goodness of biclusters for gene expression data
por: Li, Li, et al.
Publicado: (2012) -
A probabilistic coevolutionary biclustering algorithm for discovering coherent patterns in gene expression dataset
por: Joung, Je-Gun, et al.
Publicado: (2012) -
Healthcare Biclustering-Based Prediction on Gene Expression Dataset
por: Ramkumar, M., et al.
Publicado: (2022) -
Differential co-expression framework to quantify goodness of biclusters and compare biclustering algorithms
por: Chia, Burton Kuan Hui, et al.
Publicado: (2010) -
QUBIC: a qualitative biclustering algorithm for analyses of gene expression data
por: Li, Guojun, et al.
Publicado: (2009)