Cargando…
Utilizing graph machine learning within drug discovery and development
Graph machine learning (GML) is receiving growing interest within the pharmaceutical and biotechnology industries for its ability to model biomolecular structures, the functional relationships between them, and integrate multi-omic datasets — amongst other data types. Herein, we present a multidisci...
Autores principales: | Gaudelet, Thomas, Day, Ben, Jamasb, Arian R, Soman, Jyothish, Regep, Cristian, Liu, Gertrude, Hayter, Jeremy B R, Vickers, Richard, Roberts, Charles, Tang, Jian, Roblin, David, Blundell, Tom L, Bronstein, Michael M, Taylor-King, Jake P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574649/ https://www.ncbi.nlm.nih.gov/pubmed/34013350 http://dx.doi.org/10.1093/bib/bbab159 |
Ejemplares similares
-
RECOVER identifies synergistic drug combinations in vitro through sequential model optimization
por: Bertin, Paul, et al.
Publicado: (2023) -
Data-driven discovery of molecular photoswitches with multioutput Gaussian processes
por: Griffiths, Ryan-Rhys, et al.
Publicado: (2022) -
Bond graphs for modelling engineering systems
por: Blundell, A J
Publicado: (1982) -
SARS-CoV-2 3D database: understanding the coronavirus proteome and evaluating possible drug targets
por: Alsulami, Ali F, et al.
Publicado: (2021) -
Surrogate explanations for role discovery on graphs
por: Cunningham, Eoghan, et al.
Publicado: (2023)