Cargando…
LSTM-PHV: prediction of human-virus protein–protein interactions by LSTM with word2vec
Viral infection involves a large number of protein–protein interactions (PPIs) between human and virus. The PPIs range from the initial binding of viral coat proteins to host membrane receptors to the hijacking of host transcription machinery. However, few interspecies PPIs have been identified, bec...
Autores principales: | Tsukiyama, Sho, Hasan, Md Mehedi, Fujii, Satoshi, Kurata, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574953/ https://www.ncbi.nlm.nih.gov/pubmed/34160596 http://dx.doi.org/10.1093/bib/bbab228 |
Ejemplares similares
-
HLAB: learning the BiLSTM features from the ProtBert-encoded proteins for the class I HLA-peptide binding prediction
por: Zhang, Yaqi, et al.
Publicado: (2022) -
HiC4D: forecasting spatiotemporal Hi-C data with residual ConvLSTM
por: Liu, Tong, et al.
Publicado: (2023) -
Cross-attention PHV: Prediction of human and virus protein-protein interactions using cross-attention–based neural networks
por: Tsukiyama, Sho, et al.
Publicado: (2022) -
MeSHHeading2vec: a new method for representing MeSH headings as vectors based on graph embedding algorithm
por: Guo, Zhen-Hao, et al.
Publicado: (2020) -
TACOS: a novel approach for accurate prediction of cell-specific long noncoding RNAs subcellular localization
por: Jeon, Young-Jun, et al.
Publicado: (2022)