Cargando…
Consensus clustering of single-cell RNA-seq data by enhancing network affinity
Elucidation of cell subpopulations at high resolution is a key and challenging goal of single-cell ribonucleic acid (RNA) sequencing (scRNA-seq) data analysis. Although unsupervised clustering methods have been proposed for de novo identification of cell populations, their performance and robustness...
Autores principales: | Cui, Yaxuan, Zhang, Shaoqiang, Liang, Ying, Wang, Xiangyun, Ferraro, Thomas N, Chen, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574980/ https://www.ncbi.nlm.nih.gov/pubmed/34160582 http://dx.doi.org/10.1093/bib/bbab236 |
Ejemplares similares
-
Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations
por: Lei, Tianyuan, et al.
Publicado: (2023) -
Quantum annealing-based clustering of single cell RNA-seq data
por: Kubacki, Michal, et al.
Publicado: (2023) -
Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids
por: Wang, Yu Mei, et al.
Publicado: (2023) -
Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks
por: Mao, Guo, et al.
Publicado: (2023) -
SIGNET: single-cell RNA-seq-based gene regulatory network prediction using multiple-layer perceptron bagging
por: Luo, Qinhuan, et al.
Publicado: (2021)