Cargando…
Machine learning approaches for drug combination therapies
Drug combination therapy is a promising strategy to treat complex diseases such as cancer and infectious diseases. However, current knowledge of drug combination therapies, especially in cancer patients, is limited because of adverse drug effects, toxicity and cell line heterogeneity. Screening new...
Autores principales: | Güvenç Paltun, Betül, Kaski, Samuel, Mamitsuka, Hiroshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574999/ https://www.ncbi.nlm.nih.gov/pubmed/34368832 http://dx.doi.org/10.1093/bib/bbab293 |
Ejemplares similares
-
Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches
por: Güvenç Paltun, Betül, et al.
Publicado: (2019) -
Recent advances and prospects of computational methods for metabolite identification: a review with emphasis on machine learning approaches
por: Nguyen, Dai Hai, et al.
Publicado: (2018) -
Modelling [Formula: see text] with historical weather information improves genomic prediction in new environments
por: Gillberg, Jussi, et al.
Publicado: (2019) -
SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug–drug interactions
por: Nguyen, Duc Anh, et al.
Publicado: (2022) -
Probabilistic modeling and machine learning in structural and systems biology
por: Kaski, Samuel, et al.
Publicado: (2007)